P802.1Qcr

Submitter Email: janos.farkas@ericsson.com
Type of Project: Amendment to IEEE Standard 802.1Q-2014
PAR Request Date: 27-Jan-2016
PAR Approval Date:
PAR Expiration Date:
Status: Unapproved PAR, PAR for an Amendment to an existing IEEE Standard

1.1 Project Number: P802.1Qcr
1.2 Type of Document: Standard
1.3 Life Cycle: Full Use

2.1 Title: Standard for Local and metropolitan area networks--Bridges and Bridged Networks
Asynchronous Traffic Shaping

Contact Information for Working Group Chair
 Name: Glenn Parsons
 Email Address: glenn.parsons@ericsson.com
 Phone: 613-963-8141
Contact Information for Working Group Vice-Chair
 Name: John Messenger
 Email Address: jmessenger@advaoptical.com
 Phone: +441904699309

3.2 Sponsoring Society and Committee: IEEE Computer Society/LAN/MAN Standards Committee (C/LM)
Contact Information for Sponsor Chair
 Name: Paul Nikolich
 Email Address: p.nikolich@ieee.org
 Phone: 8572050050
Contact Information for Standards Representative
 Name: James Gilb
 Email Address: gilb@ieee.org
 Phone: 858-229-4822

4.1 Type of Ballot: Individual
4.2 Expected Date of submission of draft to the IEEE-SA for Initial Sponsor Ballot: 01/2020
4.3 Projected Completion Date for Submittal to RevCom: 10/2020

5.1 Approximate number of people expected to be actively involved in the development of this project: 40
5.2.a. Scope of the complete standard: This standard specifies Bridges that interconnect individual LANs, each supporting the IEEE 802 MAC
 Service using a different or identical media access control method, to provide Bridged Networks and VLANs.

5.2.b. Scope of the project: This project specifies procedures and managed objects for a bridge to perform asynchronous traffic shaping over full-duplex links with constant bit data rates.

 Asynchronous traffic shaping provides an additional layer of shaped egress queues to merge flows into the existing queue structure. The required minimum number of independent queues at an egress port is adjustable and is at least the number of ingress ports of the particular bridge that require merging.

 The project provides an informative framework for worst case delay analysis in static networks/configurations.

5.3 Is the completion of this standard dependent upon the completion of another standard: No
5.4 Purpose: Bridges, as specified by this standard, allow the compatible interconnection of information technology equipment attached to separate individual LANs.
5.5 Need for the Project: Current bridging standards do not provide a sufficiently fine grained asynchronous traffic mechanism to provide zero congestion loss with deterministic latency without using network topology information.

This project specifies mechanisms that do not rely on synchronous communication, thereby providing independence from clock synchronization mechanisms and higher link utilization than synchronous mechanisms.

5.6 Stakeholders for the Standard: Developers, providers, and users of networking services and equipment for streaming of time-sensitive data. This includes software developers, networking IC developers, bridge and NIC vendors, and users.

Intellectual Property
6.1.a. Is the Sponsor aware of any copyright permissions needed for this project?: No
6.1.b. Is the Sponsor aware of possible registration activity related to this project?: No

7.1 Are there other standards or projects with a similar scope?: No
7.2 Joint Development
 Is it the intent to develop this document jointly with another organization?: No

8.1 Additional Explanatory Notes (Item Number and Explanation): The core operation of the intended mechanism on the data plane is described in http://www.ieee802.org/1/files/public/docs2015/new-tns-specht-ubs-queues-0521-v0.pdf.