Ethernet TSN as Enabling Technology for ADAS and Automated Driving Systems

Michael Potts
General Motors Company

co-authored by
Soheil Samii – General Motors Company
Automotive Ethernet Began its Path of Success

• IEEE 802.3 standards for 100BASE-T1, 1000BASE-T1, and beyond, will address automotive industry needs in bandwidth and physical layer characteristics required by automotive operational environments

• IEEE 802.1 TSN standards will address most automotive IN-Vehicle Ethernet communication needs of precise time synchronization, latency guarantees and predictability, ultra-low latencies, fault tolerance, and dependability

• TSN will enable substantial simplification of the challenging implementation of safety-critical automated driving systems
Agenda

• Driving automation definition

• Communication requirements and role of TSN standards

• Example architectures using TSN features

• Concluding remarks
Key Use Case: Driving Automation

• Driving automation levels classify and categorize automotive features based on their capabilities in performing the driving task:

 • **Operational behaviors** (longitudinal and lateral control, object/event detection and response (OEDR))

 • **Tactical behaviors** (speed/lane selection, maneuver planning)

 • **Strategic behaviors** (destination/route planning)

Dynamic Driving Task (DDT)
Driving Automation Levels

1. **Driver Assistance.** Sustained longitudinal OR lateral control relative to external objects and event (e.g., ACC).

2. **Partial automation.** Longitudinal AND lateral control for a given Operational Design Domain (ODD). Driver must supervise, and perform remainder of DDT.

3. **Conditional automation.** Complete DDT within a given ODD, providing appropriate response to relevant objects and events. Require the driver to take control if the system is about to exit its ODD or in case of system failure.

Note: Driving automation levels are defined in SAEJ3016
4. **High automation.** Complete DDT within a given ODD. Automatically bring the vehicle to “minimal risk condition” without reliance on the driver if the system is about to exit its ODD or in case of system failure, or in case of vehicle base failure (e.g., flat tire)

5. **Full automation.** Complete DDT under all on-road driving conditions in which the operator is legally permitted to operate a vehicle (no prescribed ODD)

Note: Driving automation levels are defined in SAEJ3016
Summary of Automation Levels

The level depends on the system’s capability of performing the following functions within the context of a given Operational Design Domain:

• Primary subtasks of the Dynamic Driving Task
 • Lateral control
 • Longitudinal control
 • Object and Event Detection and Response

• Fallback capability
Agenda

• Driving automation definition

• Communication requirements and role of TSN standards

• Example architectures using TSN features

• Concluding remarks
Communication Requirements

Primary subtasks of DDT

- Lateral control
- Longitudinal control
- OEDR
Communication Requirements

Primary subtasks of DDT

• Lateral control
• Longitudinal control
• OEDR

Mixed real-time traffic and mixed latency requirements

- 802.1Q priorities and credit-based shaper (AVB)
- 802.1Qch cyclic queuing and forwarding
- 802.1Qbv scheduled traffic
- 802.1Qbu preemption
- 802.1Qcc stream reservation and configuration

UBS: Urgency Based Scheduler (not yet a TSN project)

Common notion of time

- 802.1AS(-Rev) timing and synchronization
Communication Requirements

Fallback capability
- ODD boundary detection (same as previous slide)
- *System failure detection and mitigation (fail-operational)*

- Link failure
- 802.1CB Seamless Redundancy
- Connector failure
- 802.1AS-Rev Timing & Synchronization
- Sync master failure

- Microcontroller or switch failure
- 802.1Qci Ingress Filtering & Policing; UBS
- Babbling idiot error
- DoS attack
- Violation of bandwidth or timing contract

TSN support
Agenda

- Driving automation definition
- Communication requirements and role of TSN standards
 - *Example architectures using TSN features*
- Concluding remarks
System Overview and Use Cases

Improvements on Sophisticated Automotive Advanced Drivers Assistance Systems (ADAS) like:

- Adaptive Cruise Control
- Lane Departure Assist
- Blind Spot Assist
- Brake Assist

Fictive example of an in-vehicle E/E architecture
E/E Architecture Example
802.1CB and Ring Topologies
802.1CB and Failures

- Data still available (Fallback)
- Switch informs host controller (application software on host notifies driver or performs minimal risk condition control)
802.1Qci Ingress Filtering and Policing

• Ingress policing on switches
• Blocking ("fail-silence")
• Local host or distributed notification in case of violations
• Fallback capability

Exceeds predefined rate
802.1CB/Qbv/Qbu – Backbone and Actuation

- Replication
- Deterministic latency (preemption and time-aware shaping)
- Elimination
- Deterministic latency

ECU

Camera

Radar

ECU

Radar

ECU

ECU

ECU

DCU

DCU

Camera

Radar

Radar

Steering ECU

Engine ECU
802.1CB/Qbv/Qbu – Backbone and Actuation

Preemption, Time Aware Shaper

ECU

Camera

Radar

ECU

Ocean

Display

Danish

Braking ECU

Steering ECU

TSN enables dependable and deterministic low-latency communication in presence of bandwidth-consuming communication like ADAS sensors and audio/video
TSN is a Flexible Protocol Set Supporting...

Driving Automation
- Sensor data streams
 - Time critical communication
 - Redundant computing power
 - Redundant paths

Synchronization of the domains

Ensuring deterministic latency in the consolidated Backbone

Protection against misbehaving nodes

Backbone/Domain controller

Synchronized fusion of sensor data

Redundant path for Fail Operability

Protection against misbehaving nodes
Advanced Driver Assistance Systems

- Sensor data streams
- Every single message is important
- Redundant computing power
- Redundant paths
- Adaptive Architectures
 - Transfer of functions to other ECUs
 - Runtime configuration of features
 - Mode changes
 - “Automotive plug and play”

Infotainment

- Synchronization of Audio and Video
- Integration of Mobile Devices
- Synchronization of the domains
- Dynamic reservation in cases of ECU misbehavior or failure
- Redundant path for supporting function handover
- Path discovery
- High frequent sample transport
- Preventing buffer overload at the Switches
- Sync of transport streams

TSN is a Flexible Protocol Set Supporting …
TSN Progress vs. Automotive Deployment

Development progress

- When Ethernet is the dominant in-vehicle networking technology
- Near-future active safety and automated driving
- Steering and braking actuation; backbone
- Higher automation levels
- Urgency for automated driving

When Ethernet is the dominant in-vehicle networking technology

Steering and braking actuation; backbone

Higher automation levels

Urgency for automated driving

1/20/2016
Agenda

• Driving automation definition

• Communication requirements and role of TSN standards

• Example architectures using TSN features

• Concluding remarks
Challenges

- Keep it Simple
- Keep it Flexible
- Keep it Reliable
- Keep it Robust
- Keep it Inexpensive to Implement
- Availability
Conclusions

• The TSN standards address very important engineering problems in the development of driving automation systems

• TSN will help the automotive industry in complying with functional safety requirements (ISO 26262)

• TSN adds Layer 2 solutions for real-time and dependability in switched Ethernet, all of which are instrumental in the automation of the Dynamic Driving Task and Fallback Capability