
Paternoster policing and scheduling
Paternoster policing and scheduling
Mick Seaman

This note describes a simple real-time packet bandwidth reservation, policing, queuing, and
transmission scheduling algorithm that provides bounded network delays without requiring
clock synchronization between adjacent network nodes1.
__

1. Summary

The paternoster real-time forwarding algorithm
provides bounded delays across the network and
lossless service for streams that conform to their
reservations. The basic algorithm uses four output
queues per class of service per port2, and one counter
for each egress port stream reservation. Best effort
traffic can make use of any remaining bandwidth
(either unreserved or not currently used), with a
relaxed upper delay bound (before discard).

The algorithm can also be described (see 4. below) as
an improvement on the peristaltic shaper (CQF), with
the node to node synchronization requirement
removed; as deadline oriented, with not before/not
after attributes for forwarded packets3; or indeed as an
improved credit based shaper.

All the nodes (in any particular network) are
configured to use a basic epoch duration4 . Flow
reservation ip occupies a ip

5 fraction of the
transmission bandwidth p of port p. p’s epochs are
not synchronized with those of other ports forwarding
frames for eventual transmission by p.

At any given time the prior, current, next, and last
epochs each have an associated transmit queue.
Packets are transmitted from the prior queue (while
any remain on that queue) and then from the current
queue. Relayed packets associated with any given
reservation are added to the current queue, until the
addition of a packet would exceed that reservation’s
bandwidth allocation for an epoch, then to the next and
finally to the last queues, discarding any additional
packets.

When a new epoch begins, the current queue becomes
the prior queue, the next and last queues (and their
remaining allocation for each reservation) becomes

current, and next respectively. The former prior queue
should be empty (if it is not, there has been a
reservation or transmission selection error, and the
queue is purged), is given a fresh set of reservations,
and becomes the new last queue.

Figure 1 shows the fortunate scenario in which Alice6

transmits consecutive packets (1, 2, 3, …) for a given
reservation at regular intervals, one in each of her
epochs (delineated by |), with each packet
experiencing a constant delay en route to Bob who
queues each to the current queue (shown by c in the
figure) in each of his epochs before transmitting it to
Charlie, again with constant delay.

Figure 2 shows the same information with the
timescales shifted by the constant transit delay
between each pair of participants.

1The pasternoster algorithm originated in a network delay analysis. This note is a result of a request from John Messenger at the January 2017 interim for a
protocol description that meets certain specific criteria, though we did not discuss these algorithms. Paternosters are described in
https://en.wikipedia.org/wiki/Paternoster. I am not aware of any networks of paternosters, but the construction of a chain with load transfers at intermediate
nodes should (for engineering reasons) be easier than the use of a single paternoster of the considerable extent required for many potential deployments.
2The use of the term queue here refers to a packet FIFO, though more sophisticated service algorithms are possible.
3Although these two scheduling approaches are probably thought of as being very different, there is a mapping between them. I have not had the time to
participate in the P802.1Qcr discussion: everyone who has may already be familiar with these ideas—feedback appreciated.
4The wikipedia entry for the use of the following symbol, tau, in biology, seems appropriate. https://en.wikipedia.org/wiki/Tau
5Including the per frame overhead. A reservation has to be made with some awareness of packet size and per headers (including those added en route).
6In the examples of present interest Alice always talks (and never listens), while Bob may relay the conversation to Charlie, who rarely says anything.

Figure 1—Best case forwarding (constant delays)

Alice

Bob c

Charlie

c

c c

1 42 3

c

c

c c

5

1 42 3 5

c c

Figure 2—Best case, constant delay, time shifted

Alice

Bob c

Charlie

c

c c

1 42 3

c

c

c c

5

1 42 3 5

c c
Revision 2.0 March 13, 2017 Mick Seaman 1

https://en.wikipedia.org/wiki/Paternoster
https://en.wikipedia.org/wiki/Tau

Paternoster policing and scheduling
The algorithm does not dictate exactly when (in an
epoch) frames for a given reservation are transmitted.
The class of service transmit queues do not have to be
serviced as pure FIFOs, provided that the transmission
selection used provides the reserved bandwidth to any
frames eligible for transmission in an epoch, and the
prior queue is emptied before any frames are taken
from the current queue. If one or more packet can be
transmitted, then one of them should be. Alice might
transmit frames for a given reservation towards the
end of one epoch and towards the beginning of the
next. Bob might then receive both (sets of) frames in a
single epoch, adding the first to the current queue and
the second to the next as shown in the Figure 3
scenarios (for a one epoch per frame reservation).

In fact, because all the packets for a given reservation
can arrive and be added to the current queue at the end
of an epoch, up to two epoch’s worth of traffic can be
transmitted in one of the transmitter’s epochs: from the
prior epoch’s current queue (now labelled prior) as
well as that received during the present epoch (added
to and transmitted from the current queue). However if
that doubled up transmission occurs the transmitter
will have transmitted at most one epoch’s worth of
traffic in the immediately prior epoch (from the prior
queue for that epoch) and one epoch’s worth of traffic
in the immediately succeeding epoch (because there
will be no traffic left on the present epoch’s current
queue)7. So a recipient can receive at most three
epoch’s worth of traffic in a single epoch, and add that
to the current, next, and last queues. See Figure 4.

The bunching of two epoch’s reservations into a single
epoch on reception can propagate (e.g. to Charlie in
Figure 3, first scenario), or might be defeated by
transmission of the two (sets of) frames in different
epoch’s (as Bob does in the second). Bob’s use of the
next queue might end in the following epoch (first two
scenarios) or persist (as in the third) until Alice reverts
to her previous in-epoch transmission timing.

If the participant to participant transit delay varies then
the frames of two transmission epochs can be received
in a single epoch, even if there is no variation in
initiating transmission. See Figure 5.

If transit delay is measured from a transmitter’s
acquisition of the last octet of a frame to be forwarded
to the recipient’s acquisition of that last octet8, then
variations in packet size imply variations in transit

7Because transmitting more than one epoch’s worth of traffic in one of the transmitter’s epochs depends on carrying over traffic from the prior epoch, once a
transmitter has transmitted two epoch’s worth in a single epoch it cannot do so again until it has accumulated an epoch’s worth of backlog. The scenario 2|1|2
is not possible.

Figure 3—Variable transmission timing

Alice

Bob c

Charlie

c

c c

1 42 3

c

c

n c

5

1 42 3 5

n c

Alice

Bob c

Charlie

c

c c

1 42 3

c

c

n c

5

1 42 3 5

c c

8A useful measure for present purposes since it measures the interval between the time at which the transmitter can check the FCS and make decisions on the
frame, including initiating transmission, and the time at which the recipient can do likewise.

Figure 4—Worst case bunching

Alice

Bob c

Charlie

n

n

1 42 3

c n

5

1 42 3 5

l

n

Don

c

1 2 3

l l

4 5

c c c c c

Alice

Bob c

Charlie

n

n

1 42 3

c c

5

1 42 3 5

l

n

Don

c

1 2 3

l l

4 5

c c c c c

Figure 5—Variable transit delay

Alice

Bob c

Charlie c c

1 42 3

c

n

5

1 42 3 5

c

c n

c

n

Revision 2.0 March 13, 2017 Mick Seaman 2

Paternoster policing and scheduling
delay. Larger effects result from the use of preemption
(which can significantly increase the transit time of the
preempted frame). However, if the time to transmit a
full prior queue (starting at the beginning of an
epoch), plus the variation in transit delay, plus any
differences between participants’ epoch duration does
not exceed , then we do not require any extra queues.
This is sufficient to ensure that four epoch’s worth of
reservations are not received in a single epoch: in
Figure 4 frames 1, 2, and 3 from Bob are not delayed
in transit so much that Charlie receives them in the
same epoch as frame 4.

This delay restriction can be met by ensuring that one
epoch’s worth of reservation leaves adequate time for
best effort traffic, while still allowing for the delay
variation experienced across a bridge from input port
to output port. Alice, Bob, and Charlie are associated
with ports that are transmitting frames for a given
reservation, and there are sufficient Alices etc. to allow
all the frames for a reservation to be received at the
same time—if that is necessary to make a worst case
argument. See Figure 5

For algorithm pseudo-code see 6. below.

The basic algorithm’s worst case forwarding delay
through a single bridge for reservation conforming
traffic is 3 , and could occur if there is sufficient
network fan-in to realize the worst case scenario
described above (e.g. frame 3 at Charlie in Figure 5).
Detailed analysis of modest over provisioning, fan-in,
and packet sizes can reduce this bound, but part of the
attractiveness of a good simple scheme is not having
to do that analysis.

The duration of an epoch, , does not have to be the
same for each class of service (though must be
consistent network wide). If different durations are
used they are arranged and used in a way that ensures
each does provide the requisite bandwidth for each
class of service in each epoch. One possibility is to use
strict priority transmission selection, with lower
priority classes using a period of twice the duration of

the higher priority classes and an epoch start that is
aligned with that of alternate high priority epochs. In
this arrangement the amount of bandwidth that the
higher priority classes can take from that available to
those of lower priorities is consistent for each of the
latter’s epochs (which would not be the case if the
epoch starts were not aligned).

2. Using additional epochs

The basic paternoster algorithm can be extended to use
additional epochs/queues, adding next_but_one, and
next_but_two, … before last to accommodate network
links with greater transit delay variation. PBNs can be
used (for example) to interconnect local sites without
requiring the frames traversing the PBNs to be
identified as having a separate class of service or
increasing for all traffic. Only the bridges that
interface directly with the PBNs need use the
additional epochs.

3. Best effort traffic

Best effort traffic can be simply transmitted at a
strictly lower priority, filling in the transmit
opportunities left by reserved traffic in any given
epoch. If this is done, the bandwidth remaining after
fixed reservations should allow for at least one
maximum sized best effort frame per epoch (as well as
meeting the frame delay criterion described above), so
the transmission of a best effort frame that extends
from the end of one epoch into the start of another
does not violate the reserved bandwidth commitment
for the latter.

The amount of best effort traffic already queued can
also be compared with the spare bandwidth available
for forthcoming epochs and further best effort packets
dropped if their anticipated transmission time is too far
into the future—effectively sizing the best effort queue
to provide delay bounds. A multi-queue algorithm can
also be used to bound transmission delays without
restricting the amount of bandwidth used in an epoch.

4. Comparison with other algorithms

The peristaltic shaper (802.1Qch, Cyclic Queue and
Forwarding) synchronizes the epochs used by bridges
throughout the network and (in paternoster algorithm
terms) queues each relayed frame for the next epoch
and transmits only from the current epoch. The
peristaltic shaper’s worst case forwarding delay
through a single bridge is the 2 . However the
peristaltic shaper’s synchronization means that the
delay across a network of h hops is between (h - 1) +
δ and (h + 1) + δ, where δ is the forwarding delay

Figure 6—Algorithm participants in network

Alice(s)

Bob(s)

Charlie
Revision 2.0 March 13, 2017 Mick Seaman 3

Paternoster policing and scheduling
through a single relay, ignoring the eventual
transmitting port’s queuing strategy. The paternoster
algorithm’s network delay will be between h δ and 3 h
 , though the average delay is likely to be strongly
weighted to the lower of these—if none of the inputs
to the network vary each relayed frame will be queued
and transmitted within the current epoch.

As compared with the peristaltic shaper then, the
paternoster algorithm gives up some delay
predictability in exchange for not requiring clock
synchronization and for reducing the average delay. It
should also be pointed out that the constraints on
epoch duration are not the same for both algorithms.
If the peristaltic shaper receives more than an epoch’s
permitted reservation within an epoch, the excess has
to be discarded, whereas the paternoster algorithm can
distribute the unevenly spaced input over two
successive epochs, and can thus provide the same
service with half the epoch duration. Against this has
to be set the possible difficulty of making small
reservations when using very short epochs.

5. Additional remarks

It may be apparent from the figures above that, once
the last queue is being used (with the delay that
implies) it will continue to be used until the inbound
traffic reverts to its previous timing (with the epoch
gap in reception that implies). I would recommend that
the configured for the bridges within the network be
slightly shorter (as part of not attempting 100%
network utilization) than that used by the attached
sources of traffic, so the queues will definitely clear.
Revision 2.0 March 13, 2017 Mick Seaman 4

Paternoster policing and scheduling
6. Pseudo-code

The following ‘C’ code fragments illustrate the
algorithm and highlight various points about its
externally observable behavior—they are not
intended to constrain real implementations in
any other respect.

See Figure 7. Successive epochs and their
current transmit queues are identified by the
cyclically repeating series Zero, One, Two, … .

The present epoch for each port and class of
service can differ (see 1. above): epoch array
elements identify their present prior, current,
and last epochs9 and currently selected tx

(transmit) queue (prior or current)10.

The reservations information for each port, class
of service and packet stream or flow11

comprises the number of transmitted octets
(including the overhead attributable to each
packet) permitted for that flow in an epoch, the
epoch (queue_for: current, next, … last) for
which that reservation’s packets are being
queued at present, and the remaining octet
allocation for the reservation in that epoch.

See Figure 8. When a packet (for an egress port
and class of service) is relayed, its transmit
packet_allocation is subtracted from that remaining

for its reservation’s present queue_for epoch. If
the packet will fit it is enqueued, and if the
remainder is not zero (indicating the possibility
of queuing further packets for that epoch) the
number remaining is updated and the procedure
returns True (indicating success). If the packet
was an exact fit, and the reservation had not yet
begun queuing for the following epoch,
queue_for is advanced to that epoch and the
number remaining reinitialized to the permitted

quota before the procedure returns. If the packet
didn’t fit and the reservation has not yet
advanced to the next epoch, the remainder is
recalculated for that epoch with its updated
allocation. This second attempt might succeed
or fail (the total permitted allocation might be
less than required for the packet’s size). If the
packet is not enqueued the procedure will
return False, with queue_for identifying the

9The current value of all three epoch identifiers can be derived from any one: this structure avoids the need for modular arithmetic in the following code.
10The queue structures themselves are independent of this description and are not included in Figure 7.
11The procedures and criteria for associating any given packet with a particular reservation are independent of the present algorithm.

Figure 7—Data types and structures

typedef int Int; // Types and constants case stropped by convention.
typedef Int Port_no;
typedef Int Class; // Class of service

#define Epochs 4 // epochs and transmit queues for each port and class
#define Reservations // number (arbitrary) of reservations per port and class

typedef Int Epoch; // {Zero, One, Two,. Queues-1} repeating
typedef Int Allocation;

typedef struct
{
 Epoch prior;
 Epoch current;
 Epoch last;
 Epoch tx;
} Port_class_epoch;

typedef struct
{
 Epoch queue_for;
 Allocation remaining;
 Allocation permitted;
} Reservation;

Epoch following[Epochs];
Port_class_epoch epoch[Ports][Classes];
Queue queue[Ports][Classes][Epochs];
Reservation reservations[Ports][Classes][Reservations];

Figure 8—Queuing a relayed packet for transmission

Boolean relay(port_no, class, reservation, packet, packet_allocation)
Port_no port_no;
Class class;
Reservation *reservation;
Packet packet;
Allocation packet_allocation;
{
 Allocation remainder;
 for(;;)
 {
 remainder = reservation->remaining - packet_allocation;

 if ((remainder >= 0)
 {
 enqueue_packet(port_no, class, reservation->queue_for);
 }
 if ((remainder > 0) ||
 (reservation->queue_for == epoch[port_no][class].last))
 {
 reservation->remaining = remainder; return (remainder >= 0);
 }
 reservation->queue_for = following[queue_for];
 reservation->remaining = permitted;
 if (remainder == 0)
 {
 return (remainder >= 0);
} } }
Revision 1.0 March 13, 2017 Mick Seaman 5

Paternoster policing and scheduling
next_epoch and remaining the excess of the (possibly multiple) queuing attempts in excess of the permitted

allocation.

Note that if the relayed packet cannot be queued for the an epoch, no part of that epoch’s allocation is carried
forward to the following epoch. Nor is any subsequent smaller packet queued for any epoch once that epoch’s
permitted allocation has been exceeded.

See Figure 9. When an transmit opportunity for
a port and service class arises, this procedure
attempts to dequeue a packet from the epoch.tx

queue. Initially, i.e. following the start of a fresh
epoch, this may be the queue associated with
prior epoch, as packets can be added to that
queue (reservations permitting) right up to the
end of the prior epoch (when it would have
been current). If the dequeue operation returns a
packet, or the epoch.tx queue is already that for
the current epoch, the procedure returns the
packet (or a null pointer if no packet was
available). Otherwise epoch.tx is updated to refer
to the current epoch queue and the dequeing
operation reattempted. Note that once the current epoch has started packets will no longer be added to the prior
queue, so once the latter has been drained the transmit focus selection can shift to the current epoch’s queue.
Packets can be added to and removed from this queue throughout the current epoch, though packets for some
reservations (in excess of their per epoch permitted limit) can be placed on the next epoch’s queue, thus delaying
their transmission (see Figure 8).

See Figure 10, which completes the model with
the operations necessary when an epoch gives
way to its successor. By this time the prior
transmit queue should be empty (if the permitted

total for all reservations has not erroneously
exceeded the transmit capacity) — the queue is
purged (emptied) to guard against persistent
errors. The prior, current, and next epoch
identifiers are updated (if they were Zero, One,
and Two, they become One, Two, and Zero

respectively). Then each reservation that is not
already queuing to the (new) current epoch is
updated to queue_for that epoch with its
remaining allocation initialized to the permitted

allocation for an epoch.

Figure 9—Transmit selection

Packet tx_select(port_no, class)
Port_no port_no;
Class class;
{
 Packet packet;

 for(;;)
 {
 packet = dequeue(port_no, class, epoch[port_no][class].tx);
 if ((packet != Ptr_to_null) ||
 (epoch[port_no][class].tx == epoch[port_no][class].current))
 {
 return(packet);
 }
 epoch[port_no][class].tx = epoch[port][class].current;
} } }

Figure 10—Epoch updating

epoch_tick(port_no, class)
Port_no port_no;
Class class;
{
 Epoch temp = epoch[port_no][class].prior;

 purge_queue(port_no, class, epoch[port_no][class].prior);

 epoch[port_no][class].prior = following([port_no][class].prior);
 epoch[port_no][class].current = following([port_no][class].current);
 epoch[port_no][class].last = following([port_no][class].last);

 for(i = 0; i < Reservations; i++)
 {
 if (reservations[port_no][class][i].queue_for !=
 epoch[port_no][class].current)
 {
 reservations[port_no][class][i].queue_for =
 epoch[port_no][class].current;
 reservations[port_no][class][i].remaining =
 reservations[port_no][class][i].permitted;
} } }
Revision 1.0 March 13, 2017 Mick Seaman 6

	Paternoster policing and scheduling
	1. Summary
	2. Using additional epochs
	3. Best effort traffic
	4. Comparison with other algorithms
	5. Additional remarks
	6. Pseudo-code

