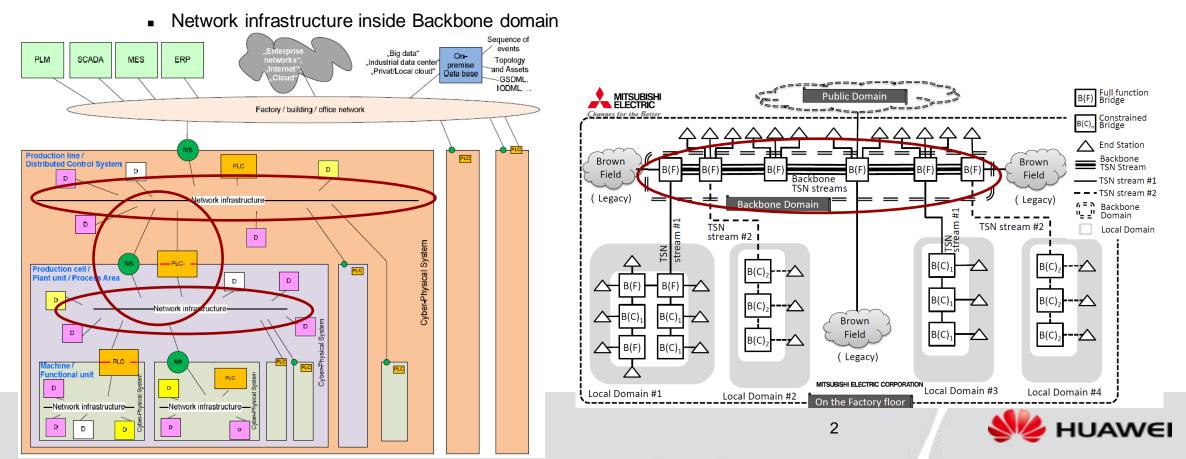
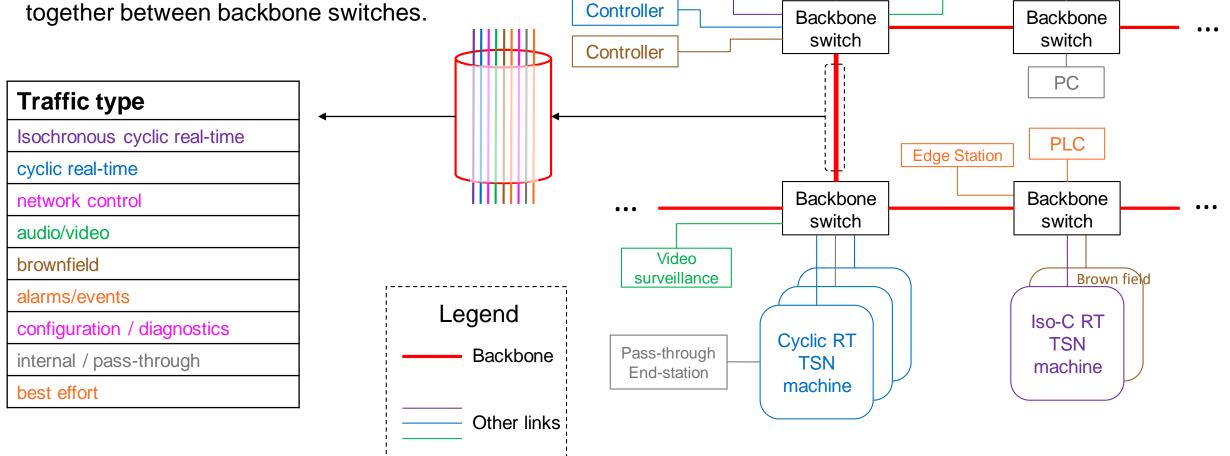
Multi-traffic transmission in industrial backbone network

Lihao Chen, Tongtong Wang Huawei



HUAWEI TECHNOLOGIES CO., LTD.


Background

- Industry backbone network connects subnets and/or public network.
 - Hierarchical structure of industrial automation use case
 - Network infrastructure from Production line to Production cell
 - Hierarchical domain based network system MITSUBISHI ELECTRIC

Example

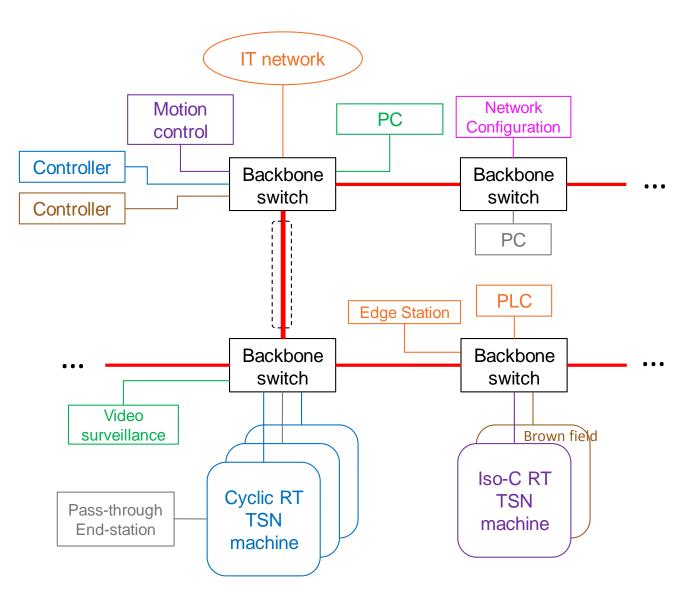
Different traffic types could be transmitted together between backbone switches.

IT network

PC

Motion

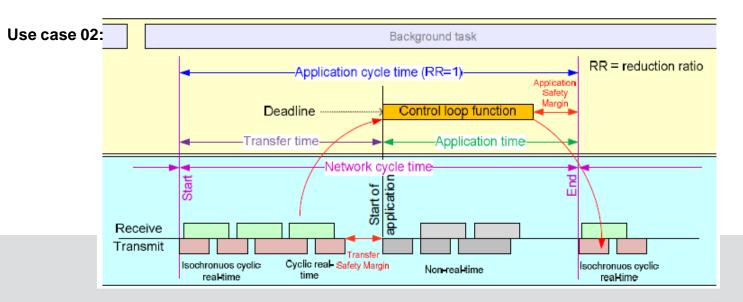
control



Network

Configuration

Features

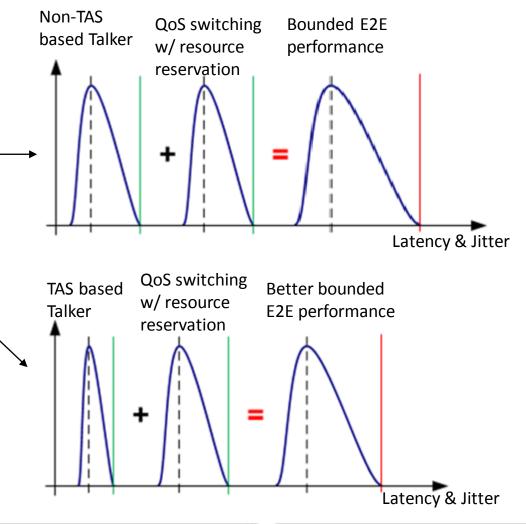

- Efficiency
 - Multi-communication shares one network.
 - Easier network OAM & Redundancy.
- Flexibility
 - Facilitate remote/centralized control architecture.
 - Reduce end-station positioning constraint.
 - Support flexible manufacturing for the future.
- Requirements:
 - Guarantees (deadline, bounded latency, bandwidth)
 of each different traffic type has to be fulfilled.
 - Change of one stream will not cause disturbances to others.

Network Approach 1: Backbone Switch with TAS

- Support both stream and class based scheduling.
 - The cycle of Gate Control List (GCL) could be multiple of network cycle, to integrate multiple flows with different cyclic period.
- Multiple traffic configuration example:
 - □ Step 1: Schedule periodic traffic
 - Iso-Cyclic stream/class 1: app cycle = network cycle (RR=1)
 - Iso-Cyclic stream/class 2: app cycle = 2 network cycle (RR=2)
 - Thus, choose GCL cycle = 2 network cycle
 - □ Step 2: Schedule sporadic traffic
 - Non-real-time traffic: "fill in the blank"

		Time slot	lso- Cyclic	Cyclic	Non-re	al-time		
Network cycle		T00	0	С	o/C	o/C	1	
		T01	0	С	o/C	o/C	Transfer time	
		T02	С	0	o/C	o/C		
		T03	С	С	0	0		
							Application	
		T(x-1)	С	С	0	0	time for stream 1	
GCL cycle		Тx	0	С	o/C	o/C		
		T(x+1)	С	С	0	0	Application time for stream 2	
	;	T(x+2)	С	0	o/C	o/C		
		T(x+3)	С	С	0	0		
		T(2x-1)	С	С	0	0		
Gate Control List								

Network Approach 1: Backbone Switch with TAS


- Advantages:
 - Fulfill the requirement of all traffic types (even with different application cycle).
 - Path planning and scheduling for more deterministic performance.
- Challenge:
 - □ Scheduling complexity when the number of station/stream is large.
- TSN Mechanisms needed in switches include,
 - Required: TAS (Qbv), Time sync (AS-Rev).
 - Deptional: Preemption (Qbu), CQF (Qch), PSFP (Qci), etc.
 - Control plane mechanisms like SRP/RAP, NETCONF/YANG with CNC.

Network Approach 2: Backbone switch with QoS/Shapers

- Description:
 - Streams with same traffic type could be aggregated as a same class.
 - □ Using Strict Priority and Credit-based Shaper with resource reservation.
 - Similar as 802.1BA TSN profile for AVB, bounded end-to-end latency can be achieved.
 - Better end-to-end performance if scheduled traffic is enabled on Talkers, while switches use only QoS/shapers.
- Multiple traffic configuration example:
 - □ 3 traffic class with 2 SR class.

Traffic type	Algorithm	SR class	Priority
Iso-Cyclic	CBS	А	2
Cyclic	CBS	В	1
Best effort	SP		0

Network Approach 2: Backbone switch with QoS/Shapers

- Advantages:
 - No need for time synchronization and centralized configuration.
 - Relative simple approach which could fit in many use cases.
- Challenges:
 - More chance for bursting and larger variation in latency.
- TSN Mechanisms needed in switches include,
 - Required: CBS (Qav).
 - □ Alternative: Preemption (Qbu), ATS (Qcr), PSFP (Qci), etc.
 - Control plane mechanisms like SRP-MRP, RAP-LRP.

Proposal

- Add an explicit use case for mixed traffic transmission to the use case draft.
 - Use case XX: Transmission of mixed traffic types. (text uploaded)
 - Under Clause 2.4 Industrial automation mode of operation (or Clause 2.5 Industrial automation networks)
- Add requirements to the requirement draft accordingly.
- Questions?

Thank you

www.huawei.com