

Additional parameters for a bidirectional TSN communication with a underlying Sub-structure

Contribution Beckhoff Automation By Karl Weber

11.09.2018

- A Machine has typically a Control Unit and couple of Field Devices
 - Field Devices can have only Inputs or only Outputs or both as process data
 - Smart Devices include a <u>control loop</u> that is controlled by the Control Unit by Set-Points with Feed-Back values from the devices
 - Examples for smarter field devices are drives
- A Cell (Line) includes a set of Machines as Executing <u>Devices</u> and a Cell <u>Control</u> Unit
 - Again, a loop structure is required to control the machines
- The roles of the end stations are denoted as <u>control unit</u> and <u>device</u>

Machine internal networks are <u>isolated</u> (physically/logically) from Cell networks

→ the structuring of both networks are done independently ... different persons, different organizations ...

Structure in this context

BECKHOFF

Coordination of communication interaction

TSN cell communication designed by plant builders

Example of embedded machine communication

- Blue: bidirectional TSN communication
- Yellow: device/subsystem internal communication
- There are n Devices (x=1..n)
- optimized timing requires model of local system reaction
- Criteria shortest S1x arrival time at Control Unit of all Devices x
- The the calculation of stream send offsets requires information related to:
 - Streams S0x and S1x with ist payload
 - Latency of S0x and S1x
 - Device/Subsystem (Sub-)communication

Calculation of sub-communication delay and inbound stream parameter **BECKHOFF**

- Depends upon Control Unit demands and the Device internal structuring:
 - Device can determine the **latency** of the internal communication
 - Control Unit can determine the amount and the structure of the data to be exchanged
 - For simple system structure the formulae
 SubcommDelay = SubcommLatency+RateFactor*StreamPayload+LocalReaction
 - SubcommLatency, LocalReaction can be put together as Device parameter
 - RateFactor is a **Device parameter**
 - StreamPayload is a <u>Control Unit parameter</u>
 - Can be more complex if latency and payload per local subelement depend upon each other e.g. only a part of payload may be relevant
 - Suggest to use the above performance parameter as default
 - But more enhanced calc schemes should be allowed (OUI specific TLV)
- Inbound stream payload is defined by the Control Unit
- Needs several interactions between Device and Control Unit

- Underlying control loops run faster! (4 to 8 times)
- Control loops run with a time error and requires a setup time
- The send offset is not a given interval at TSN level but an interval at the control loop
- The internal <u>control loop time</u> shall be an additional parameter and the offsets shall refer to that control loop!

Machine Communication isolated

BECKHOFF

TWINs: Identical machines have identical configurations when shipped →Marking of Machine access ports accordingly: block machine internal stream reservation, allow cell access

- The machine internal data path can be hardly coordinated with cell communication
- The internal setups of the machines may not allow a common cell schedule
- The communication can be shifted into the next microcycle
- The processing may be located in the next but one cycle
- Machine control is faster which allows use of multiple cycles

- An outstanding feature of TSN is the synchronization beyond a single machine.
 - Allows correlation of machine data
 - Reduction of cycle time or more precise machine interactions possible
- Problem in case of failures
 - the local interactions shall be decoupled from sync beyond machine.
 - This could result in a time offset between a machine and the cell level
 - it may be necessary to run temporarily different clocks.

Redundancy at cell level

- Cell level redundancy is required more frequently
 machines may be turned on/off while other machines are operational.
- Redundant cell control units may be used.
 - Hot standby →multiple streams one of them being active and the other one passive.
 →should be supported by the machine internal structures.
 - Cold standby is the more frequent use case with a spare control unit for several cells.
 - cell control tasks may move away from machines to a more suitable place at the factory site.
 This may require a cell backbone connected in a resilient way (such as <u>a ring or coupled rings</u>)

BECKHOFF

