Address Assignment for Stateless Flow-Zone Switching in the Data Center

Document Number:

Date Submitted:
2018-01-24
Source:

Roger B. Marks \quad Voice: +18022272253
EthAirNet Associates
E-mail: roger@ethair.net
404 Montview Blvd
Denver, CO 80207 USA
*http://standards.ieee.org/faqs/affiliationFAQ.html

Re: 802.1CQ Project, 802.1 Data Center Bridging Task Group

Venue:
January 2018 Interim Session

Abstract:

This document describes a local address assignment algorithm suitable for use in a data center environment. The application of the algorithm supports stateless Layer 2 routing, without the need for stored forwarding tables. This contribution is intended for discussion regarding its suitability as the basis of a proposal for a standardized address assignment method for specification in P802.1CQ ("Draft Standard for Local and Metropolitan Area Networks: Multicast and Local Address Assignment").

Notice:
This document represents the views of the author and is offered as a basis for discussion.

Address Assignment for Stateless Flow-Zone Switching in the Data Center

Roger B. Marks
EthAirNet Associates

Key points

- A Layer 2 data center routing method is described at a high level.
- The method minimizes state in switches by embedding routing instructions in MAC addresses.
- A specific version can eliminate the need for forwarding tables.
- The method relies on specific address assignment, which could be considered for standardization in P802.1CQ.

Data Center folded-Clos"fat-tree" architecture

 (example: Layer 3 Facebook Data Center Fabric)

Data Center architecture: Four Zone Levels

Flow-Zone Data-Frame Address Format

e.g., for 48-bit data-plane frames addressed to servers

server address

Flow-Zone Switching: DA-embedded Source Routing

Flow-Zone Control-Frame Address Format

for control-plane frames: addressed to switches
fabric switch address

address header
pod ID
spine ID
flow level 2 ID
flow level 1 ID
flow level 0 ID

spine switch address

address header
spine switch ID
spine ID
flow level 2 ID
flow level 1 ID
flow level 0 ID

Note 1: server and rack switch format is similar to data-plane address Note 2: each address format needs to be distinct (in header or otherwise)

DA-embedded Source Routing: Control Frames

Scaling

This partitioning would support, for example:

- 256 spines
- Facebook uses 4
- 256 spine switches per spine (256 ports per spine switch)
- Facebook began with 12, scalable to 48
- 256 pods
- Facebook lets this evolve with demand
- seems to use 96-port switches; that limits pod count to 96
- 256 racks per pod
- Facebook uses 48
- 256 servers per rack
- Facebook has been reported to use 48
- 2^{24} (>16M) total servers
- Facebook topology "capable of accommodating hundreds of thousands" of servers
- 256 VMs per server
- could be more, according to flow ID assignment
- 8 bits per MAC address left over for differentiation of data-plane flows
- Conclusion: this partition allows scaling into the foreseeable future
- Full scale-out uses 256-port spine switches; 512-port fabric and rack switches
- This partitioning may be over-dimensioned.

Forwarding Tables

- Flow-zone switching is essentially source-routed, with the route (or equal-cost equivalents) embedded in the DA.
- Switches need not learn or know any MAC addresses.
- Switches need to maintain port mapping tables:
- spine switch:
- pod ID => port
- fabric switch:
- (local) rack ID => port
- spine switch ID => port
- rack switch:
- spine ID => port
- (local) server ID => port
- With special connectivity and address assignment, no such mapping tables are required, and the routing is stateless.

Stateless Forwarding

 assign zone IDs to match port IDs

Address Assignment

- Presume each spine switch knows that is a spine switch.
- Spine switch sends a message to each live port, saying:
- your pod ID is <outgoing spine switch port ID>
- Fabric switch receives those messages from spine switches
- identifies those ports as spine switch ports
- confirms that all received messages are consistent, with the same pod ID
- identifies itself as a fabric switch
- replies to each spine switch, saying:
- your spine switch ID is <outgoing fabric switch port ID>
- sends a message to each other live port, saying:
- your pod ID is <pod ID> and your rack ID is <outgoing fabric switch port ID>
- Rack switch receives those messages from fabric switches
- identifies those ports as fabric switch ports
- confirms that all received messages are consistent, with the same pod ID
- identifies itself as a rack switch
- replies to each fabric switch, saying:
- your spine ID is <outgoing rack switch port ID>
- sends a message to each other live port:
- your pod ID is <pod ID>, your rack ID is <rack ID>, and
- your server ID is <outgoing rack switch port ID>
- Fabric switch receives messages from rack switches
- identifies those ports as rack switch ports
- confirms that all messages from rack switches are consistent
- Note: Could use, e.g., no-relay DA (01-80-C2-00-00-00 to 01-80-C2-00-00-0F).
- Note: Above, the identifiers may be just the 7 least significant bits of the port IDs.

Summary

- Flow-zone switching provides efficient Layer 2 routing in the folded Clos or fat-tree architecture of the modern data center.
- can be adapted to similar structures
- The Flow-Zone Data-Frame Address Format and Flow-Zone Switch-Frame Address Format embed source routing into addresses.
- Separate data plane and control plane address formats and routing rules.
- Method is loop-free, each hop advancing the frame toward the destination.
- Frames are in standard format and can be bridged normally, with full VLAN transparency.
- Flow identification fields in the addresses can steer behavior in the network and at endpoints.
- The described partitioning scales beyond foreseeable data center network dimensions, using the 48-bit local address format.
- The method can be implemented so that it is essentially stateless, without forwarding tables in the switches.
- Switch needs to remember only its own identity.
- Stored flow state may be used to improve performance.
- An algorithm to assign addresses for stateless operation has been described.

