
RAP/LRP Interaction using LRP Service

Primitives

Feng Chen, Juergen Schmitt, Franz-Josef Goetz

IEEE 802.1 Interim Meeting

Sept. 2018, Oslo, Norway

Page 2 09.2018, Oslo, Norway IEEE 802.1 Interim Meeting

Introduction

This presentation examines some of the LRP functions currently specified in P802.1CS-D1.5,

in particular the LRP service primitives, and provides some thoughts on how to use them to

specify the Resource Allocation Protocol (RAP) in the upcoming P802.1Qdd project.

1) Use of the LRP association primitives in RAP

2) Handling of Portal disconnection

3) Registrar database overflow

4) RAP proxy/slave systems

Page 3 09.2018, Oslo, Norway IEEE 802.1 Interim Meeting

1) LRP Association Primitives for RAP

LRP D1.5 provides the following Association primitives for its applications to

▪ initiate the creation of LRP-DT instances and Portals in either of the following two ways:

• Enable Portal creation request (10.2.2) – when using LLDP for discovery

• Enable fixed Portal request (10.2.3) – when using static configuration

▪ approve or deny the portal handshake: Complete Portal create request (10.2.4)

▪ receive the portal association status from LRP: Portal status indication (10.2.5)

RAP will specify state machines (see the next slide) that interacts with LRP to handle portal association, which

▪ support choosing either of two portal creation methods via a managed object

▪ trigger routines when receiving portal status indication from LRP

• process the Application Information TLV (9.2.2.10) received from the neighbor, when "detected"

• enable use of applicant/registrar primitives to operate database, when "connected"

• perform actions, when "disconnected"

Page 4 09.2018, Oslo, Norway IEEE 802.1 Interim Meeting

Use of LRP Association Primitives in RAP State Machine

The state machine keeps track of the following

three states:

▪ INIT: initial state

▪ PENDING: portal creation in progress, use

of LRP database primitives disabled.

▪ OPERATIONAL: portal connected and

operational, use of LRP database primitive

enabled

The state machine calls the following routines

in response to LRP portal status indication:

▪ processRecvAppInfoTlv: in the event of

detected, check received App info TLV to

decide whether approve the handshake

▪ handleDisconnection: perform actions in

the event of disconnection (hello time-out),

e.g. reset database or shut down the portal

completely

REQUEST_LLDP_PORTAL_CREATION

Enable_Portal_creation_request(); (10.2.2)

REQUEST_EXPLICIT_PORTAL_CREATION

Enable_fixed_Portal_request(); (10.2.3)

explicitPortalCreation!explicitPortalCreation

WAIT_LRP_PORTAL_STATUS_INDICATION

INITIALIZATION

portalStatus = INIT;

BEGIN

Enable_Portal_creation_request() == SUCCESS

APPROVE_ASSOCIATION

Complete_Portal_create_request(TRUE);
(10.2.4)

CHECK_INFO_TLV

processRecvAppInfoTlv();

DENY_ASSOCIATION

Complete_Portal_create_request(FALSE);
(10.2.4)

Portal_status_indication == detected &&
portalStatus = PENDING;

Enable_fixed_creation_request() == SUCCESS

processRecvAppInfoTlv() == DENY processRecvAppInfoTlv() == APPROVE

ENTER_OPERATIONAL

portalStatus = OPERATIONAL;

HANDLE_DISCONNECTION

handleDisconnection();

ENTER_PENDING

portalStatus = PENDING;

UCT

Portal_status_indication ==
connected

Portal_status_indication == disconnected &&
portalStatus == OPERATIONAL;

UCT

UCTUCT

Page 5 09.2018, Oslo, Norway IEEE 802.1 Interim Meeting

portalId Assignment Issue

portalId on the LRP/Application service interface

▪ used as an identifier that associates the application with a specific Portal

▪ present in all service primitives, except the Enable Portal creation request and Enable fixed Portal

request primitives, because portalId is unknown to the application when these primitives are issued by

the application to initiate the portal creation.

Issues:

▪ The current LRP draft D1.5 does not specify how and when portalId will be allocated by LRP and notified

to the application.

• On the port connected to shared medium, a single call of either of the enable Portal creation primitives

can possibly result in creation of more than one portals for mutliple point-to-point associations. A more

sophisticated scheme for assigning multiple portalIds and notifying them to the application is needed.

Page 6 09.2018, Oslo, Norway IEEE 802.1 Interim Meeting

2) Primitives for Handling of Portal Disconnection

▪ LRP makes use of periodic exchange of Hello LRPDUs to ensure that the Portals are connected and

operational. Once Hello exchange has timed out or otherwise failed, a Portal status indication with the

code „disconnected“ is issued by LRP to the application.

▪ RAP conducts soft-state reservation and relies on the LRP Hello mechanism to keep alive. When the

“disconnected” status on a portal is reported by LRP, RAP may take one of the following actions:

▪ Reset database by using the Write record request (10.3.1) primitive (with zero data size) to delete

records on the applicant side and using the Delete record request (10.4.1) primitive to delete records

on the registrar side, and meanwhile leaving LRP to continue running the hello state machines,

which will keep trying to reconnect to the neighbor.

▪ Shut down the Portal completely including deletion of all state machines and data associated with

that Portal.

▪ Proposal: define a dedicated primitive for use by the application to request LRP to shut down

an existing Portal indexed by the portalId

Page 7 09.2018, Oslo, Norway IEEE 802.1 Interim Meeting

3) Registrar Database Overflow

▪ The Database overflow request primitive (10.4.2) in the current LRP draft D1.5 provides the ability for the

application above the registrar to report an overflow status in the registrar database, which triggers LRP to

set the database overflow bit in the Hello LRPDUs that are transmitted to the applicant side.

▪ It would be useful for the application if LRP adds support for a more precise overflow reporting and handling

mechanism on a per-record granularity, which means

▪ The registar knows which record causes overflow and sends this information back to the applicant

▪ The applicant reports the overflowed records to the application above it, with which the application can

take measures accordingly, e.g. instruct LRP to delete the records that cause overflow.

▪ Proposals:

▪ add an overflow flag as a return value of the existing Record written indication primitive (10.4.3)

▪ define an extra overflow bit in the record header, which will be carried in partial and complete list.

▪ define a new per-record database overflow indication primitive for use by the applicant

Page 8 09.2018, Oslo, Norway IEEE 802.1 Interim Meeting

4) LRP Proxy/Slave Systems for RAP

B1
E1

E4

LRPDUs
B6

E6

B2 B3 B5

B4

E3E2

B6

B2 B3 B5

B4

p
roxie

d

B8

B7

B9

E7

E5

Network controller
with RAP proxy

End-station controller
with RAP proxy

E B
End-station or bridge

with RAP native

E B
End-station or bridge with

RAP slave (proxied)

Network or end-station controller
with RAP proxy

E2 E3 E4 E5

▪ RAP could leavage the LRP proxy/slave systems to realize network function virtualization for

stream reservation

Page 9 09.2018, Oslo, Norway IEEE 802.1 Interim Meeting

Discussion

Thank You!

