802.1CBdb
Generic stream identification function
Contents

• Back to a simple flat mask & match stream identification
 – Outcome of the last discussions
 – Proposal

• How to proceed with 802.1CBdb
Back to the initial M&M proposal

MASK&MATCH-BASED FLAT STREAM IDENTIFICATION
Outcome of the latest discussion

• Considering the potential evolution of Ethernet and the upper-layer protocols
 – Ethernet: the Tags issue
 • The Tag family will have new additions
 • No fixed Tag order in the frame
 • Tags’ Ethertype attribution policy not “deterministic”
 – Upper-layer protocols
 • Variety of existing protocols
 • More to come
• Keep it simple for the user to define the identification parameters
 – Mask&Match using a list of bit fields in the frame
New proposal

• Starting from what we have in 802.1CB
 – “Stream identification utilizes a single Service Access Point (SAP) to a connectionless packet service offered by the layer below it [e.g., the Intermediate Sublayer Service (ISS) of Clause 11 of IEEE Std 802.1AC], and offers an array of SAPs to the layers above it, corresponding to different Streams.”
New proposal

• Starting from what we have in 802.1CB
 – In fact, the ISS defined in 802.1AC (Clause 11) seems to be the right candidate for a Mask&Match-based identification:

    ```
    M_UNITDATA.indication
    (destination_address,
     source_address,
     mac_service_data_unit,
     priority,
     drop_eligible,
     frame_check_sequence,
     service_access_point_identifier,
     connection_identifier)
    M_UNITDATA.request
    (destination_address,
     source_address,
     mac_service_data_unit,
     priority,
     drop_eligible,
     frame_check_sequence,
     service_access_point_identifier,
     connection_identifier)
    ```

 – The M&M stream identification function can use a subset of the ISS primitive parameters as inputs:
 • destination_address
 • source_address
 • mac_service_msdu
New proposal

• At that particular level in the stack, the `mac_service_msdu` contains all the possible Tags a frame can include.

• and the Ethertype,
 – somewhere beyond the Tags

• ... and the upper-layer (application) payload
 – after the Ethertype
New proposal

- Principle: the Mask&Match-based stream identification function uses a union of 2 sets of parameters:
 - Address (source and/or destination) set
 - msdu bit field set
 - the mask of the fields that have to be matched within the `mac_service_msdu` in the form of list of offset-length couples:
 \{(offset_1, length_1); (offset_2, length_2); ...; (offset_N, length_N)\}
 Offsets and lengths expressed in bits
 First bit of the `mac_service_msdu` at offset 0
 - This union must not be empty
 - At least 1 address or at least 1 msdu bit field present
 N > 0 if the address set is empty
• An example of:
 – Stream identification based on:
 • Destination Address
 • VLAN-ID
 • UDP flow
 – DSCP
 – L4 protocol number
 – Source IP address
 – Destination IP address
 – Source Port
 – Destination Port
 – Applied to VLAN- and R-Tagged frames
Example

- Corresponding identification parameter set:

 Address set $\{\text{destination_address}\} \cup$

 $\{(0,16), \text{ C-TAG Ethertype}\}$

 $\{(20,12), \text{ VLAN-ID}\}$

 $\{(80,16), \text{ Ethertype}\}$

 $\{(96,4), \text{ IP version}\}$

 $\{(104,6), \text{ DSCP field}\}$

 $\{(168,8), \text{ IP Protocol number}\}$

 $\{(192,32), \text{ Source IP}\}$

 $\{(224,32), \text{ Dest IP}\}$

 $\{(256,16), \text{ Source Port}\}$

 $\{(272,16)\}$

 Dest Port
Way forward

HOW TO PROCEED WITH 802.1CBDB
Changes in 802.1CB

• Addition of a new passive stream identification function in 802.1CB Clause 6
 – Sub-clause 6.8 “Bit field mask stream identification”*

 • Passive identification function that sits at the ISS interface
 • Uses ISS’s specific parameters as input:
 – source_address, destination_address, mac_service_msdu
 • The function matches the a list of fields
 • The *stream_handle* produced by the Bit-field mask identification function (up the stack) is derived from the matching of address(es) and/or msdu bit field(s) with values defined by the user (through network management or stream establishment signaling)

*: name proposal
Changes in 802.1CB

• Clause 9 “Stream Identification Management”
 – Addition of a new tsnStreamIdIdentificationType
 • OUI: 00-80-C2, Type number: 5
 – Addition of managed objects for bit field set identification
 • Sub-clause 9.1.6
 – Source address,
 – Destination address
 – Enumeration of (Offset, Length) couples defining the bit fields to be matched in the mac_service_msdu.

• Other clauses to be modified
 – 5 “Conformance”
 – Annex A “PICS”

• Additional clauses:
 – YANG model
 – Informative annex: example use of the function
What’s next?

• Is this proposal acceptable from a technical point of view?
 – Any missing bits?
 – Any switch / bridge implementer having issues with such an identification function?

• Mature enough to start editing?
Thank you for your attention
Utiliser paramètres des primitives ISS et EISS

- DestMAC
- SourceMAC
- MSDU
- Tag ? Tags ?

Mask and match applied to MSDU only

Can we say that M&M stream identification is always applied at the ISS of the media independent convergence sublayer ?

=> Pas de notion de tag VLAN