

802.1CBdb Generic 2-level stream identification function

IEEE 802.1 Call

29 October, 2018

Contents

- Recall of the proposed generic 2-level stream identification scheme
- Header/payload delineation
- How to deal with encryption

Starting point

GENERIC 2-LEVEL STREAM IDENTIFICATION

- Stream identification parameters organized in 2 groups
 - Layer-2 and Upper-Layers
 - Layer-2 group: mandatory
 - Upper-Layers group: optional
 - Minimal mandatory subset in L2 group
 - To be defined
 - Function form:

```
{N<sub>L2</sub>; (L2offset1,L2length1); [(L2offset2,L2length2); ...; (L2offsetN<sub>L2</sub>,L2lengthN<sub>L2</sub>)]}
```

+

```
 [\{N_{UL}; (ULoffset1, ULlength1); (ULoffset2, ULlength2); ...; (ULoffsetN_{UL}, ULlengthN_{UL})\}] 

N_{L2} > n (n=?) 

N_{UL} \ge 0, ULoffset1=0
```


- An example of L2-UL identification:
 - Based on 802.1CB-2017's IPv4 + UDP stream identification
 - L2 parameter list

{2;	/* Nb param */
(0,48),	/* DA */
(116,12),	/* VLAN-ID */

• UL parameter list

{7;	/* Nb param */
(0,4),	/* IP version */
(8,6),	/* DSCP field */
(72,8),	/* Protocol */
(96,32),	/* Source IP */
(128,32),	/* Dest IP */
(160,16),	/* Source Port */
(176,16)}	/* Dest Port */
	Bi

- Applying mask-and-match to an Ethernet frame requires to be able to determine:
 - 1. the structure of the frame header
 - Series of header fields
 - 2. where the frame payload (Upper-layer) starts
 - Which depends on 1.
- How to deal with encryption ?
 - Layer-2 encryption
 - Upper-layer encryption

L2-UL parameters distincion

HEADER/PAYLOAD DELINEATION

- The 2-level identification requires to be able to delineate the header and the payload of a frame
 - The Ethernet header structure can take various forms
 - Use of the Ethertype as an "escape key" to add fields the base standard Ethernet header
 - The order of the header fields is not standardized
 - Header length is variable
 - Ethertypes codes can be classified in 3 types
 - Frame length indication (Ethernet compatibility)
 - "Payload-type" indication
 - Header field indication (the "escape key")
 - Ethertype values are independent of this classification
 - Groups of Ethertype values allocated to companies or organisations

- Mask and match on the frame header
 - Parsing (looking up Ethertypes) to find the fields and hence the frame header structure
 - Limited list of recognized Ethertypes
 - Apply a mask once the header structure is known
 - ... not very efficient.
 - Apply arbitrary masks (based on a set of pre-defined expected header formats)
 - Expected match value contains the value of the Ethertype to confirm the field type
 - Requires the definition of the set of pre-defined header formats

- Once the header format is confirmed:
 - The payload starts after the "Payload-Type" Indication" Ethertype
 - "Payload-type" Ethertype must be part of the L2 identification parameters
 - Upper-layer offset 0

- An example of L2-UL identification:
 - Expected header format:
 - VLAN-tagged
 - Redundancy-tagged
 - Expected payload:
 - IP
 - Stream identification type:
 - DA + VLAN + IPv4 + UDP

• Corresponding identification parameters:

• L2 parameter list

{ <mark>4</mark> ;	/* Nb param */
(0,48),	/* DA */
(96,16),	/* C-TAG Ethertype */
(116,12),	/* VLAN-ID */
(176,16),	/* Ethertype */

• UL parameter list

/* Nb param */
/* IP version */
/* DSCP field */
/* Protocol */
/* Source IP */
/* Dest IP */
/* Source Port */
/* Dest Port */

How to deal with encrypted frames

LAYER 2 AND UPPER LAYER ENCRYPTION

- MACsec in the protocol stack
 - Example: MACsec in VLAN-aware networks
 - MACsec integration in Ethernet protocol stack

- MACsec is an "intermediate" layer above the MAC layer that offers a similar service as the MAC layer to the upper layers through a secure (protected) and an insecure (transparent) access point provided by a MACsec entity (SecY).
 - In particular, VLANs are located "on top" of MACsec

- Stream identification and MACsec
 - Stream identification layering follows 802.1AC:
 - "Stream identification utilizes a single Service Access Point (SAP) to a connectionless packet service offered by the layer below it [e.g., the Intermediate Sublayer Service (ISS) in 802.1AC], and offers an array of SAPs to the layers above it, corresponding to different Streams".

 As a consequence, stream identification functions can be "users" of the transparent service provided by a MACsec SecY's.

- If Upper-Layer parameters are used for stream identification
- Frame payloads may be encrypted; 2 examples:
 - IPsec: Encapsulating Security Payload in Transport Mode:
 - End-to-end encryption
 - The stream correspondence has to be established prior to the payload encryption
 - Requires a mapping between the Upper-Layer-based identification and a "pure" Layer-2 stream (using L2 parameters only)
 - » Use of active stream identification to encapsulate the original stream into a L2-identified stream (i.e. with MAC addresses + VLAN-ID)
 - OPC UA: PubSub over TSN
 - L2 and OPC UA addressing/communication identification are tightly intricated
 - no real problem: stream identification is embedded in OPC UA PubSub over TSN
 - » Unique StreamId for a Publisher WriterGroup Subscriber DataSetReader NetworkMessages exchange.
 - Stream identification based on DestMAC + VLAN-ID

Thank you for your attention

MITSUBISHI ELECTRIC Changes for the Better