Security Considerations in DetNet / TSN

Tal Mizrahi Ethan Grossman Andrew Hacker Subir Das John Dowdell Henrik Austad Kevin Stanton Norman Finn Huawei Network.IO Innovation Lab Dolby Laboratories MistIQ Technologies Applied Communication Sciences Airbus Cisco Systems Intel Huawei

IEEE 802.1 / IETF Joint Workshop Bangkok, November 2018

Background

Background

• The DetNet evolution:

• Local area (isolated) networks → wide area networks

• Control of physical devices:

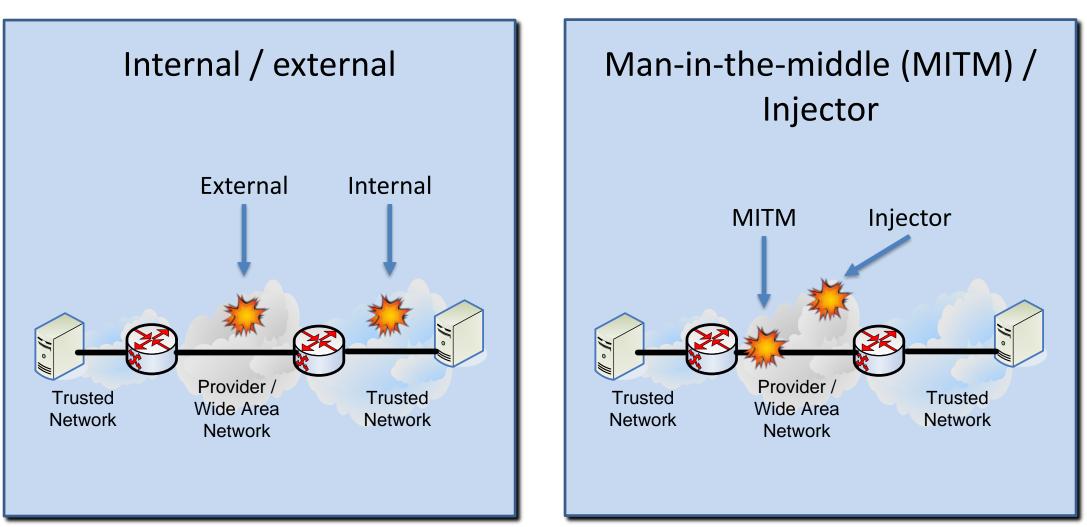
- Power grids
- Industrial controls
- Building controls
- Converged network:
 - Non-DetNet traffic
 - DetNet traffic
 - Control / signaling

Background

- The DetNet evolution:
 - Local area (isolated) networks → wide area networks
- Control of physical devices:
 - Power grids
 - Industrial controls
 - Building controls
- Converged network:
 - Non-DetNet traffic
 - DetNet traffic
 - Control / signaling

Security Challenges

DetNet Security Considerations IETF Draft


draft-ietf-detnet-security-03

Draft Outline

- Security threats
- Impact of security threats
- Mitigations
- Association of attacks to use cases

Attacker Types

[Based on RFC 7384]

Threats

Threats

• Delay attack

Attacker maliciously delays DetNet data flow traffic.

DetNet flow modification and spoofing

Attacker modifies the headers of en route DetNet packets, or spoofs DetNet packets → manipulating the resource consumption.

Inter-segment attack

- Attacker injects traffic from one segment, affecting the performance of other segments.

Threats (2)

Replication: Increased Attack Surface

Multiple paths
 more points in the network that can potentially be attacked.

Replication-related Header Manipulation

Attacker modifies replication header -> Forward both replicas / eliminate both replicas / flow hijacking.

Path Manipulation

- Attack control plane \rightarrow manipulate the paths being used.

Path Choice: Increased Attack Surface

- Attack control plane \rightarrow increase number of points that can potentially be attacked.

Threats (3)

Control or Signaling Packet Modification

Modify control / signaling packets → manipulate path / resource allocation.

Control or Signaling Packet Injection

Inject control / signaling packets → manipulate path / resource allocation.

Reconnaissance

Passive eavesdropping → gather information about DetNet flows, bandwidths, schedules.

Attacks on Time Sync Mechanisms

- Attack time sync mechanism \rightarrow disrupt DetNet flow forwarding.

Summary of Threats

+	++++ Attacker Type +			be
 +	Internal MITM Inj.		External MITM Inj	
1	+		+	
DetNet Flow Modification or Spoofing	+	+		
Inter-segment Attack +	+	+		
Replication: Increased Attack Surface	+	+	+	+
Replication-related Header Manipulation	+			
	+	+		
Path Choice: Increased Attack Surface	+	+	+	+
Control or Signaling Packet Modification	+			
Control or Signaling Packet Injection		+		
			+	
Attacks on Time Sync Mechanisms		+	+	+

Impact

Impact

Impact of Recon and Delay Attacks

	Control Plane	Data Plane
Reconnaissance	 Monitor changes in the network 	 Identify active targets
	 Monitor flows and their IDs 	 Determine type of targets based on observed stream parameters.
	Identify controllers	
		 Find opportune moment to conduct final attack

Impact of Recon and Delay Attacks

	Control Plane	Data Plane
Reconnaissance	Monitor changes in the networkMonitor flows and their IDs	Identify active targetsDetermine type of targets based on observed
	Identify controllers	 stream parameters. Find opportune moment to conduct final attack
Delay attacks	 Resource exhaustion (removing old links delayed) Reduces QoS (creating new links delayed) Denial of Service (due to exhaustion, not enough to form new link) Loss of privacy (data sent to old target) 	 Increased buffering in bridges Elimination nodes consume more resources Skew path metrics Outage (single path)

Impact of Spoofing and Modification Attacks

	Control Plane	Data Plane
Modification / spoofing	 Create/Remove/Modify streams 	Skew path metrics
, , , , , , , , , , , , , , , , , , , ,	 Modify network paths 	Consume resources
		Disrupt links
		Affect voting at elimination bridges
		Crash application

Mitigation Method	Relevant Attack(s)
 Path redundancy 	 Man-in-the-middle attacks
rathreadhancy	

Mitigation Method	Relevant Attack(s)
 Path redundancy 	 Man-in-the-middle attacks
 Integrity protection 	 Modification/tampering
 DetNet node authentication 	 Spoofing
 Encryption 	• Recon

Mitigation Method	Relevant Attack(s)
 Path redundancy 	 Man-in-the-middle attacks
 Integrity protection 	 Modification/tampering
 DetNet node authentication 	 Spoofing
 Encryption 	• Recon
 Control message protection 	Control plane attacks
 Performance analytics 	 Resource exhaustion attacks

Association of Attacks to Use Case Themes

Association of Attacks to Use Cases

- A set of use case themes
- For each theme: a discussion about specific security considerations
 - Network Layer AVB/TSN Ethernet
 - Central Administration
 - Hot Swap
 - Data Flow Information Models
 - L2 and L3 Integration
 - End-to-End Delivery
 - Proprietary Deterministic Ethernet Networks
 - Replacement for Proprietary Fieldbuses
 - Deterministic vs Best-Effort Traffic
 - Deterministic Flows
 - Unused Reserved Bandwidth

- Interoperability
- Cost Reductions
- Insufficiently Secure Devices
- DetNet Network Size
- Multiple Hops
- Level of Service
- Bounded Latency
- Low Latency
- Symmetrical Path Delays
- Reliability and Availability
- Redundant Paths
- Security Measures

Mapping Attacks to Use Case Themes

+	L											L
Theme	+Attack +++++++++++++											
•	1	2	3	4	5	6	7	8	9	10	11	
Network Layer - AVB/TSN Eth.	+	+	+	+	+	+	+	+	+	+	+	I
+ Central Administration +				I		+	+	+	+	+	+	
Hot Swap		+	+								+	
+ Data Flow Information Models				I		I	I	I	I	I		I
L2 and L3 Integration				I	+	+	I	I	I	I		
+	F — - 4	 		F	+	F ·	+	+	+	+	+	ר

. . .

Summary

Applicability to IEEE 802.1

• Attacks and mitigation are mostly relevant for IEEE 802.1

• Impacts and use cases are partly relevant to IEEE 802.1

• This document is a useful reference for IEEE 802.1

• This document does not define security solutions

Status of this Work

• Early 2017 – work started

 Early 2018 – taking a timeout until DetNet data plane solutions will be stable

• Solicit review from a wide audience