DetNet Basic concept and Services

DetNet – TSN joint workshop IETF / IEEE 802, Bangkok

Topics

DetNet

— Essentials

- Forwarding characteristics
- Building blocks / Functions
- Protocol stack (sub-layers)
- Components / Nodes
- Service types
- Some scenarios / Examples
- Summary

Overview DetNet essentials

- DetNet

- operates at the IP/MPLS layer
- is for networks that are under a single administrative control or within a closed group of administrative control.
- is NOT for large groups of domains such as the Internet.
- DetNet service provides a capability for the delivery of data flows with
 - (1) extremely low packet loss rates and/or
 - (2) bounded end-to-end delivery latency

Note1: These characteristics are accomplished by dedicating network resources such as link bandwidth and buffer space to DetNet flows and/or classes of DetNet flows, and by protecting packets (e.g., by replicating them along multiple paths. Note2: Unused reserved resources are available to non-DetNet flows as long as all guarantees are fulfilled.

Forwarding characteristics Latency, Loss and In-order-delivery

Forwarding parameters from source to destination:

- Minimum and maximum end-to-end latency; timely delivery, and bounded jitter (packet delay variation) derived from these constraints
- Packet loss ratio
- Upper bound on out-of-order packet delivery; some DetNet applications are unable to tolerate any out-of-order delivery

Note: It is a distinction of DetNet that it is concerned solely with worst-case values for the end-to-end latency, jitter, and misordering. Average, mean, or typical values are of little interest, because they do not affect the ability of a real-time system to perform its tasks.

In general, a trivial priority-based queuing scheme will give better average latency to a data flow than DetNet; however, it may not be a suitable option for DetNet because of its worst-case latency.

DetNet building blocks Combinations depends on flow requirements

- Congestion protection
 - allocating resources along the path of a DetNet flow, e.g., buffer space or link bandwidth
 - addresses two of the DetNet QoS requirements: latency and packet loss.
- Service protection
 - addresses random media errors and equipment failures
 - e.g., packet replication and elimination (against failures), packet encoding (against media errors), re-ordering (ensure in-order delivery)
- Explicit routes
 - addresses impact of the convergence of routing or bridging protocols (i.e., temporary interruptions)

Note: congestion protection provided via congestion detection and notification is explicitly excluded from consideration in DetNet. Note2: synchronization out-of-scope in DetNet discussions. It is expected to be provided by appropriate solutions.

Resource Mgmt

DetNet mechanisms I. Ensure required forwarding characteristics

- Congestion protection
 - Eliminate congestion loss

(properly designed queuing, no packets are dropped due to a lack of buffer storage)

— Jitter reduction

(to enable the convergence of sensitive non-IP networks onto a common network infrastructure)

- Explicit routes
 - A.k.a. nailed down paths

(dynamic control protocols + a network topology event impacts packet delivery)

DetNet mechanisms II. Ensure required forwarding characteristics

- Service protection
 - PREOF functions
 - PRF: packet replication function sends copies of the same packets with sequencing information over multiple paths
 - PEF: packet elimination function discards duplicates based on sequencing information and history of received packets
 - POF: packet ordering function out-of-order impact the amount of buffering at the destination to properly process received data
 - Packet encoding

encoding the information into multiple transmission units; using multiple paths; combining units

Note: Packet replication and elimination does not react to and correct failures; it is entirely passive.

DetNet protocol stack Service and Transport sub-layers

— DetNet functionality is implemented in two adjacent sub-layers in the protocol stack:

- DetNet service sub-layer: provides DetNet service (e.g., service protection), to higher layers in the protocol stack and applications
- DetNet transport sub-layer: supports DetNet service in the underlying network (e.g., by providing explicit routes and congestion protection) to DetNet flows

Flow specific information Encapsulation ...

- It is application specific
 - how data is encapsulated
 - what information encoded in header fields
- Application data flow types
 - Layer-2: encapsulated in Ethernet (e.g., a TSN Stream)
 - Layer-3: encapsulated in IP
- DetNet related mechanisms require two attributes
 - Flow-ID: to identify the flow the packet belongs to
 - Sequence number: to recognize duplicate packets and re-order packets
- DetNet specific encapsulation formats coming soon ...

DetNet service types "Forwarding paradigm: Bridging vs. Routing"

DetNet Layer-2 service

- End-systems share broadcast domain
- Forwarding over the DetNet domain is based on L2 (MAC) addresses (i.e. dst-MAC), or on received interface [RFC3985]
- L2 headers MUST either be kept, or provision must be made for their reconstruction at egress from the DetNet domain
- DetNet Routing service
 - End-systems in different broadcast domains
 - IP headers are modified per standard router behavior, e.g., TTL handling

DetNet components End-systems and DetNet nodes

- "Deterministic Network" is composed of
 - DetNet (enabled) end systems:
 - A.k.a. "host" (IETF), and an "end station" (IEEE 802).
 Sources or destinations of DetNet flows.
 - DetNet relay nodes
 - includes a DetNet service sub-layer function and DetNet transport sub-layer functions as well.
 - DetNet edge nodes:
 - a DetNet relay node that acts as a source and/or destination at the DetNet service sub-layer. (It is analogous to a Label Edge Router (LER) or a Provider Edge (PE) router.)
 - DetNet transit nodes
 - operates at the DetNet transport sub-layer, provides congestion protection over those paths.

(An MPLS LSR is an example of a DetNet transit node.) Balázs Varga | 2018-11-11 | DetNet - Basic concept and Services | Page 11

TSN Edge				
End System Node				
(T-PE)				
++ ++				
Appl. <:Svc Proxy: E2E Service				
++ ++				
TSN TSN Svc < DetNet f	low			
++ ++				
Transport Trp Trp				
+ + ++ ++				
: Link : / ,				
++ +-[Sub]-				
[Network]				
`'				
<- TSN -> < DetNet				

DetNet components (cont.) Links and sub-networks

- All DetNet nodes are connected to sub-networks
 - point-to-point link is also a simple sub-network
 - sub-networks provide DetNet compatible service for support of DetNet traffic
 - examples: MPLS TE, IEEE 802.1 TSN.
- Multi-layer DetNet systems may also be possible, where one DetNet appears as a sub-network, and provides service to a higher layer DetNet system

Relay	Transit	Edge		
Node	Node	Node		
(S-PE)	(LSR)	(T-PE)		
		+	•••+	
		:Svc Pr	oxy:	
++ ++				
Service DetNet flow> Svc				
++	++	++ +	+	
Transport	Transport	Trp	••••	
++	++	++ +	+	
/ : Li	nk: / ,	• \	:	
+ +	+ +-[Sub]-+	+	
[Network]				
	~	/		
>				

Service scenarios example I. DetNet Layer-2 service: TSN over DetNet (MPLS)

Service scenarios example II. DetNet Layer-3 service: DetNet (DN) Enabled IP Network

Summary DetNet in a nutshell

Deterministic Networking

- provides guaranteed delivery with bounded low latency, low delay variation, and extremely low loss
- extreme values (µsec, lossless, ...) often appear, but the main target is guaranteed upper bound
- Techniques/functions used include:
- Reserving data plane resources for DetNet flows in some or all of the intermediate nodes along the path of the flow
- Providing explicit routes for DetNet flows that do not immediately change with the network topology
- Distributing data from DetNet flow packets over time and/or space to ensure delivery of each packet's data in spite of the loss of a path

Questions ...

Balázs Varga | 2018-11-11 | DetNet - Basic concept and Services | Page 16