

LNI 4.0 Testbed TSN

hosted by BMWi* Mittelstand 4.0 – Kompetenzzentrum Augsburg

Labs Network Industrie 4.0 e.V. and BMWi Competence Center 4.0 Augsburg

September 2018

Introduction to LNI 4.0 e.V. and BMWi Competence Center 4.0 Augsburg

Plattform Industrie 4.0 in Germany

Working groups

INDUSTRIE4.0

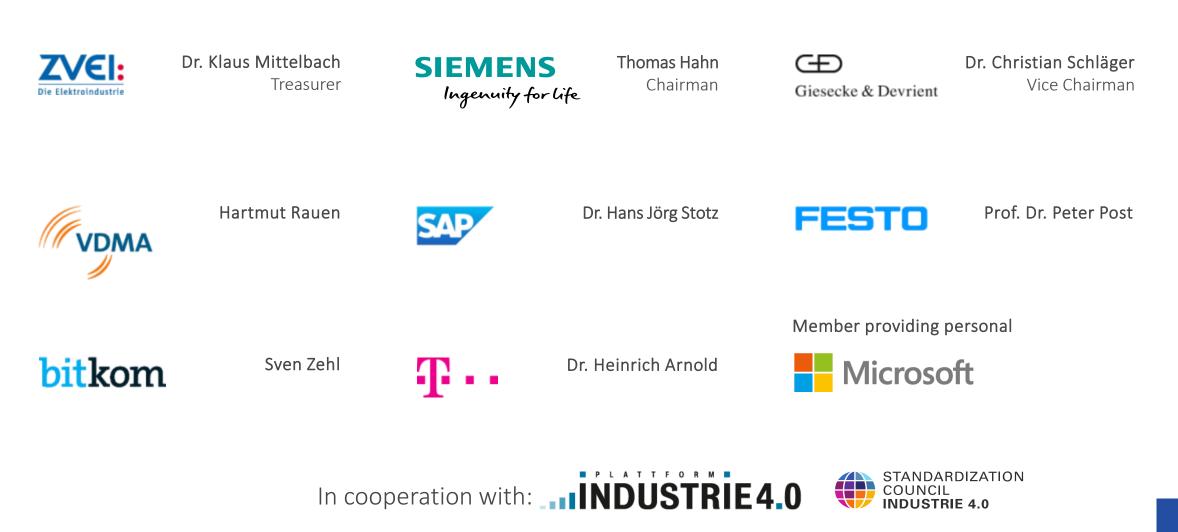
- 400 participants
- Relevant stakeholders in Germany
- No legal entity

Representatives from business, trade union, academia, government

WG1: Reference architectures, standards and norms

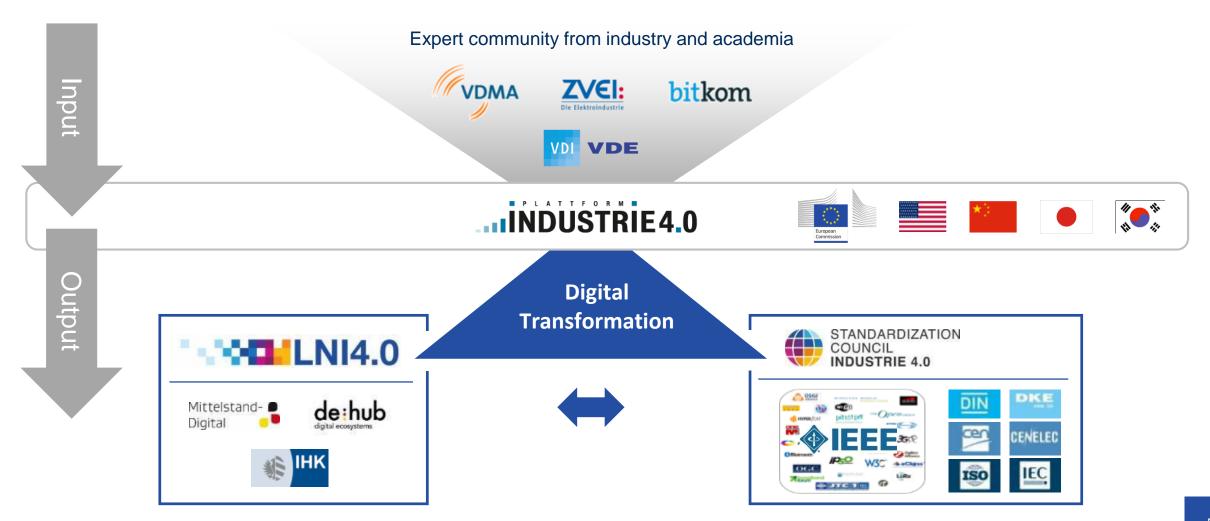
WG2: Technology and application scenarios

WG3: Security of networked systems


WG4: Legal framework

WG5: Work, education and training

WG6: Digital business models in Industrie 4.0


LNI4.0 founders, Nov. 2015

Industrie 4.0 Stakeholders

Testlabs cooperation (>40)

FH MÜNSTER SAP Co-Innovation Lab University of Applied Sciences **ARENA**2036 VIRTUAL DIMENSION CENTER IHK TECHCENTER Lufthansa Industry Solutions CETECOM DHBW Hochschule für Technik und Wittschaft Dresden Universityd Appled Sciences 9) S SCHMERSAL FZI tec.nicum FRIEDRICH-ALEXANDER excellence in safety Smart Data TWENTY54LABS Innovation Lab evosoft miversita UniTransferKlinik HSD Bectronic Factory UNIKASSEL 💹 Fraunhofer VERSITÄT IOSB

INDUSTRIE 4.0 TESTLABS

LNI 4.0 Use Case Synergies

ASSET ADMINISTRATION SHELL

VALIDATION OF THE CONCEPT OF INDUSTRIE 4.0 COMPONENTS

FACILITATE TEST SCENARIOS

- Administration shell for Industrie 4.0 components
- Validated at a flexible transportation system and a virtualized production plant

Industrial Testbed OPC UA over TSN

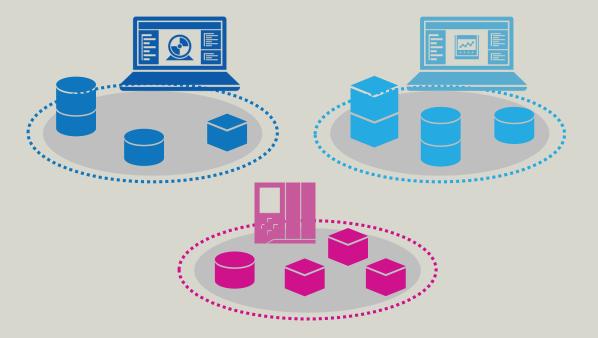
LNI 4.0 Testbed TSN partners (30, 9 SME) LNI4.0 LABS L

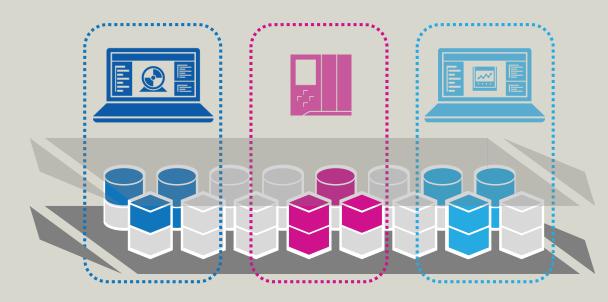
Overall LNI 4.0 Testbed TSN Goals

- Industrial testbed based on several SME usecases
- Continuous plug-festival (3rd May, 22nd August, 25th October 2018)
- TSN product development and interoperability validation of each company in protected environment on neutral ground (BMWi Competence Center 4.0 Augsburg)
- TSN testbed creates input and validation for standardization (SCI4.0) STANDARDIZATION STANDARDIZATION STANDARDIZATION STANDARDIZATION STANDARDIZATION STANDARDIZATION STANDARDIZATION STANDARDIZATION
- Usecases covered: machine to machine communication over OPC UA over TSN
- Cooperation with major testbeds (IIC and Fraunhofer FOKUS)

BMWi Mittelstand 4.0 – Kompetenzzentrum

TSN Testbed Organization




- Group 1: Robotics
- Group 2: Controllers
- Group 3: Network, Architecture
- Group 4: Cloud (passive)
- Group 5: SME use case pipeline

Towards a Converged Network Infrastructure LNI4.0 LABS NOUSTRIE 4.0

From physically isolated networks ...

... to logically isolated networks

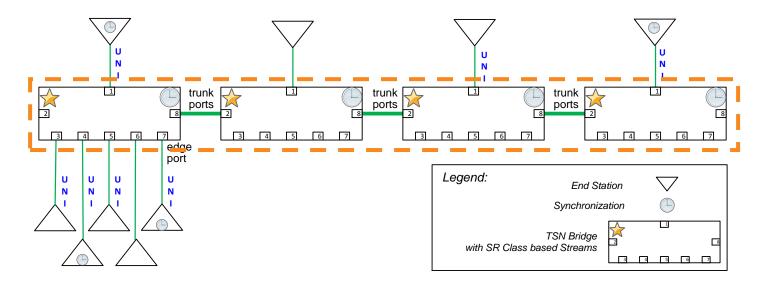
Fully Distributed Model, or

Centralized Network / Distributed User Model :

UNI interface located at network edge to hide internal network.

Fully Centralized Model: UNI interface located between CUC and CNC

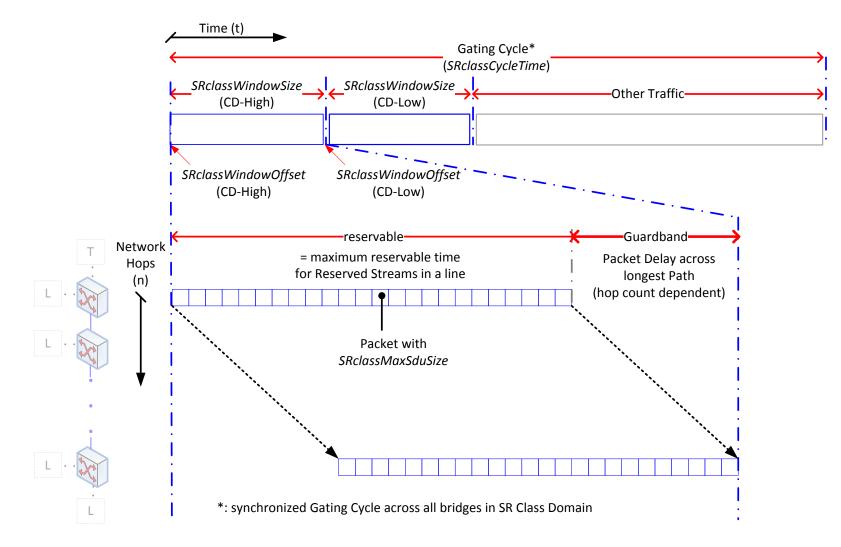
Technology Selection


Stream Reservation Protocol (SRP)

- Provides main part of User Network Interface (UNI)
- Performs stream configuration in distributed configuration model
- Protects SR Class from overbooking
- Enhancements for scheduled Traffic (Time Aware Scheduler, TAS)
 - Guarantees bounded latency for control data streams
- Precision Time Synchronization
 - Synchronized Gating Cycles IEEE 802.1AS-Rev

Stream reservation and scheduled traffic LNI4.0

How do they fit together?


- They fit under constraints:
 - Restricted bridge diameter
 - Consider the set of bridges as one virtual bridge from the point of reservation
 - TAS is used to bound the latency for the set of bridges

MSRP++ Domain Model

LNI4.0 LABS NETWORK INDUSTRIE 4.0

Enhanced Domain Attribute for SR Class – TAS - Combination

SRclassDomainAttributeEnhanced:

- SRclassID, SRclassVID, SRclassPriority: SR Class identifier, assigned VLAN identifier and data frame priority (attribute types from MSRP)
- SRclassMaxSduSize: Maximum payload size
- SRclassCvcleTime: Interval which is applied for SR class streams
- *SRclassWindowOffset:* Offset within the SRclassCycleTime interval which is applied as start offset for SR class streams
- SRclassWindowSize: Size of the window which is applied for SR class stream packets
- SRclassMaxLatency: Maximum end-to-end latency for SR Class stream packets
- SRclassTransmissionMode: Transmission selection algorithm for the SR class Periodical unsynchronized
 Time coordinated synchronized
- SRclassReservationMode: Bandwidth reservation method for the SR Class (MSRP++ method)

Within an SR Class domain, the domain attribute values between peers must be identical.

Conclusion LNI 4.0 Testbed TSN

- Industrial Testbed driven by Industrie 4.0 SME usecases
- TSN network convergence in focus (protocols, configuration)
- Plug&Work @ TSN (dynamic use cases enabled)
- SME can access testbed without obstacles (member fees,...)
- Direct access to SCI 4.0 and associations (VDMA, ZVEI, BITKOM,...)
- Synergy effects with already ongoing LNI4.0 usecases
- Liaison with IEEE 802.1 and OPC Foundation is planned
- Link to fieldbus organizations implicitly given by partners

Thank you!