Distributed Stream Configuration in Industrial Automation

Josef Dorr Siemens AG

Status Quo - Configuration Model Selection in P60802

There have been several contributions covering: Coexistence, Convergence, Intercommunication, Gaps, ... of TSN configuration models

- <u>60802-stanica-convergence-coexistence-0718-v03.pptx</u>
- 60802-Hantel-TSN-Interdomain-Communications-0718.pdf
- 60802-Steindl-ConfigurationModelAlignment-0918-v02.pdf
- 60802-chen-TSN-management-0119-v00.pdf

Coexistence of the TSN configuration models Interdomain – Fully Distributed Requirements Configuration Model Alignment Alignment to current cnfiguration considerations

Therein all models (distributed, centralized, hybrid) are considered relevant

\rightarrow All models are optional in Profile Draft D1-0

B-Q-10	Does the Bridge support MSRP per IEEE802.1Q 5.4.4 and Table 9?	0	6.2.1.1 Table 9	Yes []	No []
		1	1		
B-Q-14	Does the Bridge support IEEE802.1Qcc- 2018 per Table 10?	0	Table 10	Yes []	No []
B-Q-15	Does the Bridge support IEEE P802.1Qdd per Table 10?	0	Table 10	Yes []	No []

Criteria to select configuration options

All configuration approaches have pros and cons.

What are criteria to be considered for the selection of a configuration option in Industrial Automation?

- All relevant Use Cases have to be fulfilled.
- Support of:

(1) Convergence of multiple time sensitive applications

- (2) Latency and availability (QoS) of different levels
- (3) Dynamic stream (re-)establishment
- (4) Abstract network interface (UNI) for stream establishment
- (5) Bandwidth utilization / throughput
- (6) Scalabity from entry level to high end

This contribution provides considerations about the **distributed configuration** approach only!

Distributed Stream Configuration in Industrial Automation

(1) Workflow of Distributed Stream Configuration

- (2) LRP/RAP enhancements for Distributed Stream Configuration
- (3) Summary of selection criteria contributions of Distributed Stream Configuration

Workflow of distributed configuration (1)

Step 1: Network planning and engineering

- End-station / application requirements determine network planning
- Network layout and setup can be configured offline
- Multiple managed (e.g. by profile or policy) Traffic Classes for streams with different QoS requirements are configured in the bridges of the network
- \rightarrow A convergent TSN network is established for
 - multiple time sensitive applications
 - with different latency and availability (QoS) requirements
- Applications are configured by Application Engineering

Workflow of distributed configuration (2)

Step 2: Stream reservation and establishment (a)

- Streams are characterized by
 - unique StreamID (control), and
 - unique StreamDA (per VLAN), and
 - TSpec (MaxFrameSize, MaxIntervalFrames, ...)
- Talker-UNI: Periodic Talker attribute declaration;
 - Peer-to-peer attribute propagation with accumulated max latency per hop (in accordance to the traffic selection algorithm assigned by management) on an active loop free topology.
- Listener-UNI: Periodic Listener attribute declaration;
 - Peer-to-peer attribute propagation back to the talker defines the stream path with **bandwidth** and resource control per hop.

- Lifetime control by periodic attribute refresh.
- Diagnostic information for end-stations and bridges.

Workflow of distributed configuration (3)

Step 2: Stream reservation and establishment (b)

- New **attached end-stations** get stream class information from the network (domain attribute), can check and adapt to it.
 - New Talkers acquire unique StreamID / StreamDA and declare Talker advertise attribute
 - New Listeners acquire StreamID by e.g. higher layer protocol and declare Listener join attribute
- Streams of **removed** end-stations are released after the refresh timeout expired (if not actively removed)
- → Dynamic (ad hoc) stream establishment/release without network/traffic impact on established streams is built-in
- New **attached bridges** get stream class information from the network (domain attribute), expand the TSN domain if suitably configured.

See e.g. UC21: Dynamic plugging and unplugging of machines (subnets), or UC27 DCS device level reconfiguration

LRP/RAP enhancements for Distributed Stream Configuration (1)

• all IEEE 802.1 queuing/transmission selections can be combined with distributed stream reservation for e.g UC02: Isochronous Control Loops with guaranteed low latency

See also http://www.ieee802.org/1/files/public/docs2018/liaision-LNI40-Testbed-TSN-0918-v00.pdf

Page 8

LRP/RAP enhancements for Distributed Stream Configuration (2)

 stream transmission over redundant paths (e.g. 802.1CB FRER) can be combined with distributed stream reservation

See UC07: Redundant networks

with "autoconfig" in constrained topologies, or

ISIS-PCR based in any meshed network

See http://www.ieee802.org/1/files/public/docs2017/new-chen-RAP-white-paper-update-1117-v02.pdf

LRP/RAP enhancements for Distributed Stream Configuration (4)

 improved bandwidth utilization by Aggregation: combines multiple µStreams into one common Stream See UC17: Machine to Machine/Controller to Controller Communication, e.g. with Supervisory PLC

See: http://www.ieee802.org/1/files/public/docs2019/dd-chen-flow-aggregation-0119-v03.pdf

Additional LRP/RAP enhancement required for Distributed Stream Configuration (5)

• improved bandwidth utilization by ReductionRatio for application cycle times of 2^{^n} * network cycle time

See UC4: Reduction Ratio of network cycle or UC06: Drives without common application cycle but common network cycle

Requires RR and Phase as additional information in the TSpec!

See: http://www.ieee802.org/1/files/public/docs2018/60802-industrial-use-cases-0918-v13.pdf

LRP/RAP enhancements for Distributed Stream Configuration (6)

- proxying capabilities can be combined with distributed stream reservation to support
 - Centralized components (CUC/CNC)

See <u>http://www.ieee802.org/1/files/public/docs2018/cs-chen-RAP-LRP-interaction-0918-v01.pdf</u> and <u>http://www.ieee802.org/1/files/public/docs2018/dd-finn-RAP-LRP-MSRP-Qcc-0918-v03.pdf</u>

Summary of selection criteria contributions for Distributed Stream Configuration

- (1) Convergent TSN networks are designed by network planning and established by network management.
- (2) Latency and availability requirements of different Traffic Types are included in network planning and management.
- (3) Dynamic (ad hoc) stream establishment/release without network/traffic impact on established streams is built-in.
- (4) Talker-/Listener UNI serve as abstract User Network Interface for stream reservation with QoS properties.
- (5) Efficient use of bandwidth, i.e. high number of reservable streams with given QoS is achieved by
 - IEEE 802.1 traffic queuing/selection mechanisms, and
 - aggregation / reduction ratio
 - even with mixed link speeds.
- (6) Scalabity is given from entry level to high end:
 - from constrained to meshed topologies including FRER support
 - from constrained to non-constrained devices with proxying as an option
 - bounded latency can be guaranteed independent of chosen topology with traffic shaping
 - expandable to layer 3 support

Thank You

Questions?