
Synchronizing DRNI state
Synchronizing DRNI state
Mick Seaman

This note describes a simple sequencing protocol that allows peers communicating using
idempotent protocols and connected by media that can, at times, misorder, duplicate, and
delay packets for periods in excess of the intervals between changes to the variables they
wish to communicate to be sure that their peers have the latest copy of those variables. The
protocol deals with the possibility of a participant being rebooted without that being
apparent to its peers, without requiring non-volatile storage for transient parameters. This
capability distinguishes it from the simple use of a very large sequence space to identify
successive changes to a variable set.

1. Background

IEEE Std 802.1AX Link Aggregation specifies a
Distributed Resilient Network Interconnect (DRNI). A
pair of cooperating DRNI Systems can aggregate links
connected to either of them into a single Link
Aggregation Group (LAG). Each of those aggregated
links can be can be connected to one or other of
another pair of DRNI Systems. The resulting
configuration is resilient to link and system failure,
and is deployed where high availability is required,
e.g. to support network to network interconnect (NNI).
In this application DRNI supports dynamic service
provisioning and administrative independence for each
of the connected networks. A given customer service
can be allocated to any one of the aggregated links that
interconnect the networks with reallocation as required
if that link fails, while transmission into and out of
each of the connected networks can be allocated to a
port on either of that network’s DRNI System pair.
The paired DRNI systems are connected by an
intra-relay connection (IRC) that allows a frame
received by one of the paired DRNI Systems to be
transmitted to the other, so it can be relayed on the
correct link or network port.1

Each data frame that a DRNI System receives from the
IRC can be destined for the local network (an Up
frame that its neighbor—its partner DRNI System—
has received, on one of its aggregated links, from the
other network or destined for one of the receiving
systems aggregated links (a Down frame that its
neighbor has received from the local network). To
avoid the definition of a new tag, and to allow the IRC
to be supported by a wide range of existing
technologies, these data frames do not carry an
additional tag to identify each of them as an Up frame
or a Down frame. However it is important that the
receiving DRNI System not mistake one for the other,

as returning an Up frame to the other network or
returning a Down frame to the local network can
create a forwarding loop or disrupt other aspects of
network operation. Correct Up/Down forwarding
depends on synchronizing changes to all or some of
the variables that determine how the frames associated
with each conversation are allocated to links and local
ports. A DRNI System that has made a change, as a
result of administrative action or as a result of a link
failure or restoration, but is not sure whether its
neighbor has updated its own copy of the relevant
variables, can discard a data frame that it would
otherwise have forwarded across the IRC and/or
discard a data frame that it has received from the IRC.
Various forwarding rules are possible, though they all
depend on synchronizing some variables.

As mentioned above, an IRC can be provided in a
number of ways. Paired DRNI systems can be adjacent
in the same rack, separated so that they can benefit
from independent power and environmental support,
or separated by a considerable distance so that the two
sets of links used by a network-to-network link
aggregation group are completely route diverse. The
IRC itself can be a link aggregation group, and can use
its own provisioned service provider connection
through bridges in its home network.2 These
alternatives mean that the IRC can, in some
deployments at least, introduce occasional
misordering and frame loss and delays that may
exceed the intervals between configuration changes
resulting from link failure or restoration or from
automated management.

The Distributed Relay Control Protocol (DRCP) that
paired DRNI Systems use to synchronize their state
variables also runs over the DRC. While very rare
frame loss and misordering might be tolerable for

1802.1AX-Rev/D1.0 provides a detailed explanation with diagrams.
2Any set of technologies or protocols capable of providing the MAC Internal Sublayer Service (802.1AC
Revision 0.1 January 8, 2019 Mick Seaman 1

Synchronizing DRNI state
customer data frames, a DRC error that resulted in
looping frames is not, particularly if an error in one of
an NNI’s paired DRNI Systems resulted in returning a
frame to the other network. The effects of a failure in
one network’s half of an NNI are meant to be confined
to that network.

The design challenge then is to select rules and DRCP
protocol elements that deal with IRC misordering
without being so complex that implementors and
administrators will avoid their use in simple cases, e.g.
when the IRC between paired DRNI Systems is very
short and thought to be proof against interruption.
When rapid changes are made to variables that are to
be synchronized, each DRNI System can assume that
they are synchronized only when the latest change has
propagated to its neighbor, without the possibility of
intervening variables values subsequently appearing at
that neighbor.

Of course a network administrator might choose to
support the IRC with a TCP tunnel, but that would
provide an unnecessary guarantee (the sequential
delivery of all intervening variable changes when only
the final state is required) at the cost of additional
delay when failures occur.

2. Synchronization protocol

The proposed protocol consists of two layered
elements. First a protocol that discards out of order
frames, second a set of distinct labels for each
successive version of a set of variables so that the
transmitter of those variables can be sure that the most
up to date copy has been received. In the absence of
any future changes, the misordering prevention will
ensure that received copy can be trusted.

The important design point so far as the misordering
prevention is concerned is that it satisfies a cardinal
rule of distributed system protocol design: i.e. after a
known bounded (and acceptable) time during which
the participants in the protocol behave correctly and
all transmitted frames are received in order, the
protocol participants will reach a desired legal state
that is determined by the values of the variables that
the protocol is intended to convey, irrespective of the
initial values of the variables (however ridiculous)
used by the protocol in its operation. This
accommodates the possibility of one of the
participants being reinitialized and returning the
protocol specific variables to their initial values. This
criteria is not met by simply assign a packet number,
starting from some initial value, to each transmitted
packet and discarding all received packets carrying a

number that is not greater than the highest number
previously received.

Each packet (DRCPDU) includes a packet number
assigned by the transmitter and a reflected packet
number for each receiver. The protocol description
below considers only two participants, Alice and Bob
(say), as is the case for DRCP, though it should be easy
to see how it can be applied to more.

Alice receives a packet from Bob, containing the two
sequence numbers:

numbered // assigned by Bob
reflected // from a packet Bob received from Alice

and checks them against three variables that she
maintains:

highest_numbered // packet received from Bob
highest_reflected // in a packet received from Bob
highest_sent // previously, by Alice to Bob

accepting (or discarding the packet), and conditionally
updating those variables, and the variable

reflect // to be reflected to Bob

The following code fragment returns True if the
received packet is to be accepted, and False otherwise:

bool accept = False;
if (numbered > highest_numbered)
{ accept = True;

highest_numbered = numbered;
}
if ((reflected > highest_reflected)

&& (reflected <= highest_sent)
)

{ accept = True;
highest_reflected = reflected;

}
return (accept);

when Alice transmits a packet she increments the
value of highest_sent and places that value in the
packet’s numbered field and the value of reflect in the
packet’s reflected field.

The sequence number fields can be linear, with a large
enough sequence space for all the packets that could
be sent by a continuously operational DRNI system, at
least 32 bits, or can be circular. In the latter case ‘>’
‘<’ and ‘<=’ are interpreted as denoting the relevant
half of the sequence space relative to value to be
tested. A modest sized space, with half the space
covering the maximum number of packets that could
be in flight between Alice and Bob and back again, is
sufficient. 8 bits should be more than enough, with
further transmit opportunities denied if the values of
highest_reflected and highest_sent are too far apart. In
Revision 0.1 January 8, 2019 Mick Seaman 2

Synchronizing DRNI state
any case the IRC should be pronounced ‘down’ if that
criterion holds up transmission for more than a second
or so (data may be flowing, but the neighboring DRNI
System is probably brain dead).

The responsibilities of the upper, variable set labelling,
element of the synchronization protocol have already
been described. The important point is that the labels
potentially in use at any time be distinct, even if they
are labelling the same information. If, for example,
one of the DRNI System’s set of active link changes
(from set A to set B, say) then changes back again (to
set A) it is not sufficient for that system to know that
its neighbor’s view of those links is that of set A. That
knowledge doesn’t preclude the neighbors view from
unexpectedly changing to B (for a while at least).
Contrariwise if the successive versions of the set are
numbered 1, 2, 3, then the current situation is clear.
The version numbering space can be quite small (if
circular), just sufficient to uniquely label the distinct
version that can be extant at any one time.

3. Is this really necessary

The synchronization protocol described above can be
used in a number of applications, so the question is do
we need to use it (or something with equivalent
functionality) to support DRCP. We probably need
something to ensure that a neighboring DRNI system
has not become brain dead. There is little point in
specifying DRCP if it needs supplementing with
unspecified mechanisms and so doesn’t provide
interoperability. Apart from that the need is principally
driven by the fact that the set of active DRNI LAG
links can change frequently, on timescales comparable
with those associated with higher delay IRCs. Changes
to the available and preferred Gateway ports could be
restricted to occur at a lower rate (with the possible
exception of those made by the DRClient—referred to
as NetworkControl in the D1.0 specification).

In the D1.0 specification frames received from the IRP
are handled by the DR_IRP state machine (Figure
9-10) and the conditions for transition to the PASS TO
AGGREGATOR and PASS TO GATEWAY both
involve using neighbor state. The result is to place
more synchronization responsibility on the two DRNI
Systems than necessary. Consider what would happen
if we added a check to discard a data frame received
from the IRC if the local system’s port conversation id
and gateway conversation id and the related masks
allowed that frame to pass through both the local

gateway port and one of the local aggregation ports3.
When reflected configurations (i.e. those identical if,
for one of them, System A is relabelled as System B)
are discarded there are only two correct possibilities
for the path taken by a given frame, either both its
gateway port and its aggregation port are in the same
DRNI System or they are in different systems. It is not
possible to move from one of these correct
configurations to an unwanted Down-to-Down or
Up-to-Up configuration without at least one of
Systems changing its idea of which of them should
provide the gateway port for that frame (either neither,
admitting the Down-to-Down possibility, or both,
admitting the possibility of Up-to-Up. It follows that
we only have to synchronize gateway port4 changes to
prevent these unwanted forwarding scenarios. The
intervals between those changes could be restricted to
be much longer than any possible IRC delays, thus
avoiding the need for explicit synchronization.

3Of course we need to make sure that an frame is not forwarded across the IRC if the local System believes its gateway port and aggregation ports are both
local.
4And conversation id mapping changes, though these should take place much less frequently.
Revision 0.1 January 8, 2019 Mick Seaman 3

	1. Background
	2. Synchronization protocol
	3. Is this really necessary

