
A UML model for link aggregation management
A UML model for link aggregation management
Mick Seaman

This note is an initial proposal for a UML model for managing link aggregation (LAG),
developed as part of reviewing IEEE P802.1AX-Rev/D1.0.1 While YANG is an obvious
target, I hope changes suggested in this note can also be used to simplify the DRNI
description and the revised MIB.

1. Summary

Section 2 considers the current organization of
management specifications in 802.1 documents in
general, and what we should do in the future. YANG
augmentation will affect our structuring of
management information. The UML(ish)2 in Figure 2
uses augmentation to simplify LAG configuration,
reducing the scope for errors, temporary
inconsistencies, and duplication resulting from
associating similar parameters with separate
interfaces3. The mapping of the UML to
1AX-Rev/D1.0 management variables is discussed for
basic LAG (Section 3), CSCD (Section 4), and DRNI
(Section 5).

2. Management specifications

Specifying management objects4 in a supposedly
management protocol independent clause, separate
from the text and state machine specification of what
is managed, is cumbersome and error prone. While
this seemed to be working when we were dealing with
pre-standard management protocols, GDMO, and
early MIBs, it has lead to the generation of translation
tables that are hard to maintain and review.

A better approach would have been to include the use
of all management controls, and updating of counters
etc. within the basic operational specification, using
the descriptive techniques natural to that specification
and making sure each control and counter in that
specification could be unambiguously referenced by a
clause number and a name.

An SNMP MIB, for example, would then reference
that specification directly instead of having an
additional layer of translation and repetition5 .

We may not want to change existing MIBs. Product
MIBs bearing greater or lesser resemblance to the
standard MIB and the standard’s state machines and
procedures have already been written and deployed.
The aim should be to minimize the amount of work
involved in revising standards. However we don’t
need to add yet another translation table for YANG.

A UML model is incredibly useful in describing the
management attributes and operations, not least by
making it possible to get the entire picture on one page
and thus avoid overloading the natural limitations of
human short-term memory. A simple numeric
cross-reference direct to text that both defines and uses
each management variable should be sufficient, even
if naming conventions (prefixes, case stropping, and
abbreviation) result in a detailed name change.

Management-protocol-independent-specification has
proved to be an illusion6. Management frameworks
(such as that underlying YANG) make sweeping
assumptions about the organization of information7.
At the same time, simple descriptions of what is to be
managed are readily understandable without
framework and protocol specific expertise.

We should develop a UML model that: (a) directly
references .1AX Clauses 6 and 9, with additional or
clarifying text in those clauses as necessary to allow

1In general (not particularly in P802.1AX-Rev) the description of management objects is so verbose as to discourage all but the most dedicated of reviewers.
A typical managed object definition/declaration takes about 6 lines of text, only part of which is a more or less accurate repetition of what has to be (and is
already) said elsewhere in a standard. In contrast C++ can fit the declaration of up to half-a-dozen or so such objects on a single line (many objects being of a
common type and supporting the same set of operations, and the name being a sufficient reference to the existing description), and UML can provide an even
greater information density - to the point where it is actually possible to see what is going on in a module of significant size.
2This has a strong resemblance to the YANG tree, a correspondence which I might usefully explore further.
3A previous version of this note analyzed the duplication of information between Aggregator and Aggregation Port interfaces and went through D0.4 clause 7
in detail, mapping it to potential YANG attributes. This analysis has been removed because I have not had time to update it and (for reasons described in this
note) I don’t think we should maintain a MIB/YANG mapping. It contained information on the scale of the duplicate information problem, but is otherwise
superseded by this version.
4In most 802.1 standards, dating from 1987.
5As, for example, in 7.3 of .1AX/D0.4) where the repetition of "ATTRIBUTE", "APPROPRIATE SYNTAX", and "BEHAVIOR DEFINED AS" overlaps with
what is in the MIB, does not have unambiguous references to behavioral specification, and in any case leads to a further 4 page mapping table (Table D.1)
enroute to the MIB. In addition to 7.3 we have 5 pages of Table 7-1.
6Unique top-down decompositions of a difficult problems are fairy stories. A prominent example is the breakdown of compiler operation into logical and
obvious successive stages as presented in introductory text books. The real history followed a more experimental and iterative path.
7The design of particular management protocols may make some structures impracticable, or only achievable through convoluted work-arounds.
Revision 0.2 January 5, 2019 Mick Seaman 1

A UML model for link aggregation management
an unambiguous reference to be made; and (b) is
deliberately designed to make the final translation to
YANG as mechanical as possible. This should
facilitate review by those who can’t or won’t plow
their way through the YANG code, and help ensure
that what is managed is what is in Clauses 6 and 98

and not some alternative specification.

Each of the existing 802.1 management specifications
reflects the logical details of a standardized
operational model.9 The organization of management
variables corresponds directly to the structure of the
model: its entities, sublayers, service access points,
and internally specified constraints. Management
clearly reflects exactly what, and all that, the
operational model can be configured to do. No more,
no less. This precision and flexibility can have
associated costs. For example: a ‘bridge port’ is the
service access point that supports a bridge’s MAC
Relay Entity while a ‘port on a bridge’ is the external
socket that accepts a physical connector; a
unappealing distinction for the users of simple
equipment. The YANG notation of augmentation is a
step away from the faithful transcription of modelling
detail into configuration commands. Interface stacks
can, in simple cases, be replaced by a single interface
with additional attributes, simplifying the
configuration of related variables. The management
paradigm changes from one of uniform capability, a
single solution for all needs, to one of utilitarianism10,
with the simplest solution for the most common case
and a possible cost of introducing alternatives to cover
the full set of requirements.11

3. UML for basic LAG

Link Aggregation can benefit from a utilitarian
approach. In most systems each Aggregation Port is
paired with an Aggregator (its ‘home Aggregator’),
with each member of the pair having the same actor
and administratively assigned partner values for
System Priority, SystemID, and Key. Figure 112

illustrates the default operation of the aggregator
Selection Logic. If an Aggregation Port has selected

another Aggregator, then its home Aggregator has not
been selected by any other Aggregation Port.

We can avoid duplicating Aggregator and Aggregation
Port information by associating all the LACP
configuration information with one of the pair (the
Aggregator is the obvious choice), reducing the
potential for misconfiguration and the difficulty of
synchronizing changes.13 The lag augmentation to
ietf-interfaces.interfaces provides the management
parameters for an Aggregator (port), as shown on the
left of UMLish model in Figure 214, and includes a
reference (my-aggregation-port) to its paired
Aggregation port. The lag-statistics augmentation
adds information on LACP operation to
ietf-interfaces.interfaces.statistics. Ignore, for the
present, the lag-cscd, lag-drni, and related
augmentations. The management parameters for an
Aggregation port are shown on the top right of the
figure. The lag-aggregation-port augmentation adds
just a reference to the port’s ‘home’ Aggregator, and
no additional statistics are required. All the basic
interfaces and statistics parameters are shown for this
port. The Aggregator has these same parameters (in
the figure they are abbreviated to save space): its
lower-layer-if lists the if-indices of the Aggregation
Ports currently attached to the Aggregator.

8This has been a problem in the past. MIBs have defined management of what those advising the MIB developers have thought the specification should have
been, not what is actually in the standard.
9While implementations are not overconstrained, their observable external behavior has to match that of the model.
10Greatest good for the greatest number, otherwise the tyranny of the majority (see J. S. Mill).
11Complex interface stacks provide examples. A bridge port can be a separate interface that uses a lower Ethernet interface, or it can be an augmentation of the
latter. Adding link aggregation forces a separation of those two interfaces, and offers a choice as to whether or not the link aggregation parameters are
themselves parameters of a separate interface (anticipating some future change, perhaps) or an augmentation of the bridge port.
12Taken from the standard.
13These changes do not prevent the use of the model with other Selection Logic choices: if fewer Aggregator than Aggregation Ports are required, each
surplus Aggregator interface has an admin-status indicating that it is disabled (with the interfaces.description indicating that setting enabled will have no effect
on admin-status), with its parameters still supporting its Aggregation Port; if operational practice requires dynamic identification of physical links (which can
be plugged into physical ports in no particular order) while each Aggregator has permanently configured attributes (associated with other interface
augmentations, such as those for a Bridge Port), the Aggregation Port to Aggregator pairing can be changed.
14This figure has been drawn using Framemaker’s own graphics to allow Framemaker cross-references to be included..

Figure 1—Selection of Aggregators

Key = A Key = B Key = B Key = B

Figure 1—Selection of Aggregators

Aggregation
Ports

Key = A Key = B Key = B Key = B

Aggregators

Port 1 Port 2 Port 3 Port 4

Selected
Selected & Attached
Revision 0.2 January 5, 2019 Mick Seaman 2

A UML model for link aggregation management
octetString4 actor-pc-algorithm; // rw
octetString4 partner-pc-algorithm; // ro
enum admin-discard-wrong-conversation; // rw
bool discard-wrong-converation; // ro
md5Digest actor-pc-link-digest, partner-pc-link-digest; // ro
md5Digest actor-pc-service-digest, partner-pc-service-digest; // ro
int16 admin-link-number; // rw
int16 link-number, partner-link-number; // ro

macAddress drcp-pdu-group-address // rw (9.6.1)
if-ref intra-relay-port; // ro
macAddress neighbor-system, neighbor-partner-system; // ro ()
int16 neighbor-system-priority, neighbor-partner-system-priority; // ro (9.6.6)
int16 neighbor-partner-key; // ro (9.6.6)
bits neighbor-cscd-state; // ro (9.6.6)
octetString4 home-admin-gc-algorithm; // rw (9.4.1)
octetString4 neighbor-gc-algorithm, neighbor-pc-algorithm; // ro (9.6.6)
md5digest neighbor-gc-service-digest, neighbor-pc-service-digest; // ro (9.6.6)
md5digest neighbor-pc-link-digest; // ro (9.6.6)
bool home-admin-drclient-gateway-control; // rw (9.5.3.5)
bool home-admin-cscd-gateway-control; // rw (9.5.3.5)
md5Digest home-gc-service-digest; // ro (9.6.6)
drcpState home-admin-irp-state; // rw (9.6.6)
drcpState home-oper-irp-state, neighbor-oper-irp-state; // ro (9.6.6)
links neighbor-admin-links, neighbor-active-links; // ro
seqNumbers sequence-numbers; // ro (9.6.6)

if-ref my-aggregation-port;
macAddress lacp-pdu-group-address // rw (6.2.10.2)
macAddress actor-system, partner-admin-system; // rw (6.4.5, 6.4.6)
int16 actor-system-priority, partner-admin-system-priority; // rw (6.4.5, 6.4.6)
macAddress partner-system; // ro (6.4.5, 6.4.6)
int16 partner-system-priority; // ro (6.4.5, 6.4.6)
bool solitary; // ro (6.4.5)
int16 actor-admin-key, partner-admin-key; // rw(6.4.5, 6.4.6)
int16 actor-oper-key, partner-oper-key; // ro (6.4.5)
int16 actor-port-number; // ro (6.4.6)
int16 actor-port-priority; // rw (6.4.6)
int16 partner-admin-port-number, partner-admin-port-priority; // rw (6.4.6)
int16 partner-oper-port-number, partner-oper-port-priority; // rw (6.4.6)
lacpState actor-admin-port-state, partner-admin-port-state; // rw (6.4.6)
lacpState actor-oper-state, partner-oper-state; // ro (6.4.6)
int16 collector-max-delay; // ro (6.2.3.1.1, 6.4.2.3(w))
int32 wtr-wait-time; // rw (6.4.6)
bool wtr-revertive; // rw (6.4.6)

ietf-interfaces

Figure 2—Link Aggregation management (draft)

Figure 2—Link Aggregation management (draft)

/* For a ‘drni-gateway-port’ if augmented by ‘lag-drni’ (both ‘lag’ and ‘lag-cscd’ augmentations will be present).
Otherwise for the ‘aggregator’ if the ‘lag’ augmentation is present (with ‘lag-cscd’ optional). */

// if-ref *lower-layer-if; // ro aggregation ports attached to this aggregator.
// bool enabled; // rw
// enum admin-status; // ro (MAC_Enabled)
// enum oper-status; // ro (MAC_Operational)

ietf-interfaces

* name

interfaces // basic interface parameters, name through speed

lag // if the ‘lag-drni’ augmentation is present the interface being configured is the ‘drni-gateway-port’,
actor-system and other parameters are used or also used by the aggregator and its aggregation-port.

lag-cscd // (6.6.3.1, 6.6.3.2) optional augmentation of ‘lag’ interface

lag-drni // (9.4.1) optional augmentation of ‘lag-cscd’ interface (including basic ‘lag’), changes if-type from
‘aggregator-port’ to ‘drni-gateway-port’ and creates a ‘drni-aggregator-port’.

* port-conversation-id

statistics // basic interface statistics, always present

/* For a ‘drni-gateway-port’ if ‘lag-drni’ augmentation present (‘lag’ and ‘lag-cscd’ required).
Otherwise for the ‘aggregator’ if ‘lag’ augmentation is present (‘lag-cscd’ optional). */

lag-statistics // present when ‘lag’ augments ‘interfaces’, lacp statistics for the aggregation port

counter64 lacpdus-rx, markers-rx, marker-responses-rx; // (10.n.n) ro
counter64 illegal-pdus-rx; // remove this? ro
counter64 lacpdus-tx, markers-tx, marker-responses-tx; // ro

lag-drni-statistics // present when ‘lag’ augments ‘interfaces’, drcp statistics for intra-relay port

// nothing for tracking drcp activity other than the parameters it carries has been defined.

lag-cscd-pc // cscd port conversation attributes, present when ‘lag-cscd’ augments ‘lag’ interfaces

links admin-pc-links; // (6.6.3.1) rw
serviceIDs admin-pc-services; // (6.6.3.1) rw
bool pc-passes, pc-collected;// ro for the aggregation port (6.6.3.2)

lag-drni-pc // drni aggregator port conversationattributes, present when ‘drni’ augments ‘lag’ nterfaces

bool neighbor-pc-passes; // (7.4.1.1.25) ro

lag-drni-gc // drni gateway port and gateway conversation attributes, present when ‘drni’ augments ’lag’

serviceIDs home-admin-gc-services; // (7.4.1.1.18)
bool home-admin-gc-enabled, home-admin-gc-prefered; // (9.5.3.5, 7.4.1.1.17) rw
bool home-gc-available, neighbor-gc-available; // ro (9.6.6)
bool gc-passes, neighbor-gc-passes; // ro (9.5.2.2, 7.4.1.1.7, 7.4.1.1.26)

* gateway-conversation-id

string name; // rw
string description; // rw
if-type type; // rw
bool enabled; // rw
enum link-up-down-trap-enable; // rw
enum admin-status; // (MAC_Enabled) ro
enum oper-status; // (MAC_Operational) ro
date-time last-change; // ro
int32 if-index; // ro
address phys-address // ro
if-ref *higher-layer-if; // attached aggregator, ro
if-ref *lower-layer-if; //
gauge64 speed; // (10.n.n) ro

interfaces // basic (common) interface parameters

ietf-interfaces

* name

date-time discontinuity-time // ro
counter64 in-octets, in-unicast-pkts,

in-broadcast-pkts, in-multicast-pks; // ro
counter64 in-discards, in-errors, in-unknown-protos; // ro
counter64 out-octets, out-unicast-pkts,

out-broadcast-pkts, out-multicast-pkts; // ro
counter64 out-discards, out-errors; // ro

statistics // basic (common) interface statistics

lag-aggregation-port

if-ref home-aggregator; // () rw

/* intra-relay-port requires no additional parameters,
higher-layer-if references the drni-gateway-port./

interfaces // basic (common) interface parameters
* name

/* intra-relay-port requires no additional statistics */

statistics // basic (common) interface statistics
Revision 0.2 January 5, 2019 Mick Seaman 3

A UML model for link aggregation management
Basic LAG attributes are specified, with few
exceptions, in 1AX clauses 6.4.5 (aggregator
variables) and 6.4.6 (aggregation port variables).
Some have obvious mappings to interfaces attributes,
e.g:

Aggregator_Enabled : enabled15

Aggregator_Operational : oper-status

Aggregator_MAC_Address : phys-address

Aggregator_Interface_ID : if-index

I have chosen names for lag attributes that should
make their mapping to the individual variables in 6.4
obvious (changes include removing case-stropping
and substituting hyphens instead of underscores, to
align with general YANG conventions, and in some
cases abbreviation where that does not introduce
ambiguity). Some have (for the reasons detailed
above) counterparts in both 6.4.5 and 6.4.6 and
sometimes but not always the names of these
counterparts can differ slightly, e.g. Actor_System
(6.4.5) and Actor_Port_System (6.4.6). These
differences are unimportant as the distinction between
admininistrative and operational values remains clear.

I am not suggesting that an implementation attempt to
operate using a single copy of each variable that
appears in both 6.4.5 and 6.4.6, only that a remote
manager does not need to distinguish them. Any
visible differences would be the result of comparing
management snapshots taken while the LACP state
machines have pending transitions that are
immediately actionable, e.g. an aggregation port has
received a LACPDU with indicating a change of
partner but has not yet been detached from its current
aggregator16. It is the business of the state machine to
deal with such discrepancies, but exposing them to an
administrator would only cause confusion.

If an agggregation port has not selected its ‘home’
aggregator, no other aggregation port will select that
aggregator unless the aggregation port (interface) has
been disabled, so there is no problem with recording
LACP information received on a particular
aggregation port in the lag augmentation. Aggregation
port specific parameters such as actor-oper-state and
partner-oper-state can always be kept in the ‘home’
lag augmentation referenced by

lag-aggregation-port.home-aggregator, even if the
aggregation port is not attached to that aggregator.
Further, if another aggregation port has selected the
same aggregator, it will necessarily have the same
actor-system and partner-system, so there can be no
confusion about the values of those parameters.

I have not yet added anything to the UML to
correspond to the Aggregation Port Debug
information class. This is mainly because I doubt that
the equipment end user will ever wish to use YANG to
perform the sort of debugging that the equipment
vendor should have performed in QA. Protocol
implementation errors that turn up in the field are (if
present) likely to be very obscure and require vendor
diagnosis of a full memory dump.

4. UML for CSCD

Conversation-sensitive collection and distribution
capability is managed by the lag-cscd augmentation,
with attributes matching variables defined in 6.6.3.1
(per aggregator) and/or 6.6.3.2 (per aggregation port).
In most cases the correspondence is clear though I
have tried to avoid very long names. After reviewing
the way that these attribute names are also used with
DRNI I have (in most cases) abbreviated
‘port-conversation’ to ‘pc’17, even where D1.0 simply
uses ‘port’ e.g. ‘actor-pc-algorithm’ rather than
‘actor-port-algorithm’. Other points include:

actor-pc-algorithm covers Actor_Port_Algorithm
and Actor_Oper_Port_Algorithm. There is no need
to manage the latter separately. If the aggregation
port is not attached to an aggregator (its home
aggregator cannot be enabled) it takes the special
value "Unspecified", but there is no need to remind
the administrator of that rule. The
lag-aggregation-port.higher-layer-if provides the
attachment status.

*port-conversation-id.lag-cscd-pc.admin-pc-services
are entries in the Admin_Conv_Service_Map.18

*port-conversation-id.lag-cscd-pc.admin-pc-links
are entries in the Admin_Conv_Link_Map.

partner-pc-algorithm,
partner-pc-service-digest,
partner-pc-link-digest
I think the D1.0 spec needs to change. Just acting on

15Aggregator_Enabled (read-write) is said incorrectly (in .1AX-Rev/D1.0) to map to the read-only MAC_Enabled parameter of the ISS. The value of
MAC_Enabled is determined by controls specific to the entity providing the service (11.2 of 802.1AC-2016), and thus takes into account the result of any
internal controls that would prevent the service being provided. This would include of course (but not be limited to) the setting of Aggregator_Enabled. The
YANG interfaces model provides an optional enabled (read-write) in addition to the required admin-status (read-only). The
16Or other aggregation ports that should no longer be attached to this aggregator have not yet been removed.
17With DRNI similar variables use ‘gc’ for ‘gateway-conversation’, e.g. neighbor-gc-algorithm..
18I amnote sure what the YANG/NETCONF rules are for manipulating such an array of sets, where a specific item (in this case a Service ID, can be present in
only one set.
Revision 0.2 January 5, 2019 Mick Seaman 4

A UML model for link aggregation management
the latest received on any link for these parameters
implies ignoring the packet loss that can follow
partner misconfiguration. Better to record each
received value in the ‘home’ interface for each
aggregation port (making only these values visible
to management is sufficient, I have omitted ‘oper’
from the UML names for brevity) and do not turn
on DWC unless all these received values match on
an aggregator’s ‘active’ links, i.e. those for which
the actor is collecting.

There are no attributes directly corresponding to the
following:

Active_LAG_Links. Although this list is used by
the state machines, it is not of direct interest to a
manager: *lower-layer-if provides a list of the
currently attached aggregation ports.

Conversation_Port_Vector: The information that
this provides is available in
*port-conversation-id.lag-cscd-pc.pc-passes

(Port_Oper_Conversation_Mask renamed) for each
aggregation port active in the lag. ‘pc’ is used
throughout lag-cscd-pc for ‘port conversation’.

actor-conversation-link-digest covers both
Actor_Conv_Link_Digest and
Actor_Oper_Conv_Link_Digest. There is no need
to manage the latter separately. If the aggregation
port is not attached to an aggregator (its home
aggregator cannot be enabled) it takes the special
value ‘Unspecified’, but there is no need to remind
the administrator of that rule.

*port-conversation-id.lag-cscd-pc.pc-collected

has been added although it only appears in the state
machine detail of 6.2.7.1.2 (and in 7.3.2.1.26). It
may be needed for DRNI. To be checked.

4.1 CSCD statistics

1AX-Rev/D1.0 doesn’t appear to have defined any
statistics for CSCD operation. The descriptions of
aAggFramesDiscardedonRx (7.3.1.1.26) and
aAggFramesWithRxErrors (7.3.1.1.28) makes it hard
to tell them apart. They would map to
interfaces.statistics.in-discards and in-errors
respectively. This is a clear case for being specific in
the state machines and their procedures as to which (if

any) counters are incremented, rather than describing
relying on a separate description of the counted
condition. There is no counter that is specific to DWC
discarding wrong conversations so it is not possible to
tell how much, if any, discarding when links change
was due to having DWC enabled.

I don’t think anything more needs to be captured for
LACP operation with CSCD, but the absence of per
conversation or even per service information is
surprising. The mapping of conversation IDs to links
might be done purely on a SLA basis, but I would have
thought that there would be some scenarios in which
the bandwidth actually used by a service or services
associated with a given conversation ID would be used
as a guide for future rebalancing. Such information
might be provided by a queuing model, separate from
LAG (and .1AX) but aware of the service to link
mapping and able to take advantage of link capacity
without significant head-of-line blocking.

5. UML for DRNI

The DRNI (Distributed Relay Network Interface)
operation of one of a pair of DRNI Systems is
managed by the lag-dnri augmentation. A given
system can participate in more than one pairing—
though not with the same neighbour—supporting a
single, separate, DRNI gateway port in each DRNI
system for each pair.19 This makes it convenient to
associate all the DRNI parameters with the gateway
(port) interface. The gateway port also makes use of,
or incorporates,20 a single aggregator as previously
described for LAG and CSCD management so can be
created as an augmentation of that aggregator (port).

The lag-dnri augmentation is applied to only one of
the Aggregator’s potentially aggregated ports.21 Most
of the necessary configuration parameters are
described in 9.4.1 of .1AX-Rev/D1.0 and have an
obvious mapping to the UML attributes, points worth
noting include:

The basic interface parameters (admin-status,
oper-status etc.) and interface statistics now apply
to the gateway port, not the aggregator port. The
latter is effectively embedded within the
management scope of the DRNI port. This is

19This makes the term ‘DR-sublayer’ rather inappropriate for the separate entities support each DRNI gateway port. ‘DRNI Entity’ would be better cf.
‘MACsec Entity’ in .1AE, and ‘Port-Access Entity’ (PAE) and ‘Key Agreement Entity’ in .1X, even if most DRNI Systems will participate in a single pair and
be configured to provide only one gateway port to a single Distributed Relay Client (DRC). It would be possible to change the DRNI design to allow for
multiple DRCs, each with its own pair of gateway ports, in a single pair of DRNI Systems but there appears to be no market demand. Optimizations proposed
in this note take advantage of the lack of that complication.
20As 802.1AC points out the term ‘port’ can be applied to an interface and to the entity or entities (the interface stack) supporting that interface. In the present
case considering management of a DRNI gateway port to encompass its supporting aggregator is far from a stretch as the DRNI operational procedures reach
both into the management state of its own supporting aggregator and that of its paired neighbour’s aggrgator.
21The prior version of this note included UML references to 7.4 of 1AX-Rev/D0.4, I have removed these consistent with suggestion that references should
only be to text that specifies LAG operation and not indirected through existing management clauses (and increasing cross-reference table maintenance).
Revision 0.2 January 5, 2019 Mick Seaman 5

A UML model for link aggregation management
consistent with the DRNI use of both the home and
neighbour’s aggregator state. The aggregator port
statistics can be deduced by summing the gateway
and intra-relay port statistics.

There is (I believe) no need for the 9.4.1 DRNI
System Identifier22, or the Distributed Relay
Number. The Actor System Identifier is sufficient,
with the higher priority of the paired DRNI Systems
taking the role associated with Distributed Relay
Number if necessary. When the intra-relay
connection (IRC) is operable, the Aggregation Ports
that could be aggregated to support the gateway
port (i.e. all those with a key value matching that of
the gateway port) all use this higher priority Actor
System Identifier in the LACPDUs they transmit. If
the IRC fails, the lower priority system reverts to
using its own Actor System Identifier, thus ensuring
that its partner is not misled into believing that links
to the now separated DRNI Systems can be
aggregated.23

The neighbor-system and neighbor-system-priority
are the received values of the partner’s
actor-system and actor-system-priority. It’s
currently unused, other than to restart computations
when it changes (but see suggestion above).

The neighbor-port-algorithm is the received value
Neighbor_Aggregator_State.Aggregator_Port_
Algorithm.

*gateway-conversation-id.lag-drni-gc.gc-passes
refers to the Home_Gateway_Mask bit for the
gateway conversation (cf. 7.4), and is true if the
referenced conversation passes through the home
gateway port.
Similarly gateway...gc.neighbor-gc-passes refers to
the neighbor’s gateway.

home-admin-drclient-gateway-control matches
‘network gateway control’ (in AX-Rev/D1.0). The
standard mentions the possibility of various types of
DR Client, so the name for this control should not
limit it to network protocols24.

...lag-drni-gc.gc-enabled rather than

..lag-drni-gc.gc-enable to match the use of
‘enabled’ as a read-write control in the basic
interfaces parameters. I am unclear about the
relationship between this variable and the gateway
‘available’ result.

...lag-drni-pc.neighbor-pc-passes is true if the port
conversation identified passes through the

neighbour’s aggregator i.e. it maps to the relevant
bit in the Neighbor-Aggregator_Mask.
...sequence-numbers has been included, but I
believe these could be significantly simplified.

22I guess that part of the perceived need arose from the prior ‘third system’ model. However if the Distributed Relay Client requires a separate identifier,
possibly to indicate reachability to the same distant system in network protocol even if the IRC fails, that is the DRC’s business and out of our scope.
23So no obvious reference, and I have not supplied one
24It took me some time to figure out what ‘network control’ meant in this context.
Revision 0.2 January 5, 2019 Mick Seaman 6

	1. Summary
	2. Management specifications
	3. UML for basic LAG
	4. UML for CSCD
	4.1 CSCD statistics

	5. UML for DRNI

