

802.1CBdb EISS-parameters-based Mask&Match Stream Identification Function

IEEE 802.1 Interim Hiroshima

January, 2019

- Outcome of Bangkok meeting
- New proposal
- 802.1CB's amendments

Context, proposal and issues

OUTCOME OF BANGKOK MEETING

The context

• Recall of the MAC sublayer internal organization, 802.1Q Cl. 6

- The MAC Sublayer comprises:
 - a) Media access method-specific functions that realize transmission and reception of MAC Protocol Data Units (MPDUs).
 - b) Media access method-dependent convergence functions that use item a) to provide a media access method-independent service.
 - c) Media access method-independent functions that use a media-independent service to provide the same or another media-independent service.
- A MAC Bridge's MAC Relay Entity forwards frames between the instances of the mediaindependent ISS (IEEE Std 802.1AC).
- A VLAN Bridge's MAC Relay Entity forwards frames between the instances of the mediaindependent EISS (6.8). The EISS is provided by the functions specified in 6.9 using the media-independent ISS (IEEE Std 802.1AC). The convergence functions that provide the ISS using the media-specific functions for each IEEE 802 LAN MAC type are specified in IEEE Std 802.1AC.

- What 802.1CB says about the stream identification functions' location in the 802.1 stack
 - "Stream identification utilizes a single Service Access Point (SAP) to a connectionless packet service offered by the layer below it [e.g., the Intermediate Sublayer Service (ISS) of Clause 11 of IEEE Std 802.1AC], and offers an array of SAPs to the layers above it, corresponding to different Streams."

Bangkok proposal

M&M stream identification on top of the ISS

- M&M stream identification function using a subset of the ISS indication primitive parameters as inputs (up the stack):
 - destination_address
 - source_address
 - mac_service_msdu

- Mask&Match stream identification function based on a union of 2 sets of parameters :
 - Address (source and/or destination) set
 - msdu bit field set
 - the mask of the fields that have to be matched within the mac_service_msdu in the form of list of offset-length couples:

{(offset₁,length₁); (offset₂,length₂); ...; (offset_N,length_N)}

Offsets and lengths expressed in bits

First bit of the *mac_service_msdu* at offset 0

- Possible incompatibility with the stream identification functions already defined in 802.1CB.
 - The 4 functions already defined in 802.1CB are located on top of the EISS (Enhanced Internal Sublayer Service)
 - their integration in the bridging stack is described in the context of VLAN-capable bridges.

- In addition, the approach taken in the Bangkok proposal was making the M&M stream identification function (kind of) part of the EISS
 - Ending up making it another function supporting the EISS in addition to the tagging and untagging functions.
 - This is not 802.1CB anymore...

M&M identification on top of the EISS

NEW PROPOSAL

- M&M stream identification as passive stream identification function on top of the EISS
 - implemented only up the stack
 - using a subset of the EM_UNITDATA.indication primitive parameters as input

destination address, source_address, mac service data unit*, priority, drop eligible, vlan identifier, frame_check_sequence, service access point identifier, connection identifier, flow_hash, * If the frame is VLAN-tagged, the time to live mac service data unit is the mac service data unit provided by the ISS, which VLAN-tag has been

removed.

New proposal

- Similar to the Bangkok proposal: a union of 2 sets of masks to be matched:
 - {da_mask, sa_mask, vlan_id_mask} U {msdu_mask}
 - with {msdu_mask} = {(offset1, length1), (offset2, length2), ..., (offsetN, lengthN)} or Ø
 - with the following conditions:
 - offset = 0 points to the first bit of the mac_service_data_unit
 - The values of N, offsetN and lengthN are bounded.
 - If da_mask is NULL, the destination_address parameter is ignored.
 - If sa_mask is NULL, the source_address parameter is ignored.
 - If the frame is VLAN-tagged and vlan_id_mask is NULL, the vlan_identifier is ignored.

New proposal

- How to determine if a frame is tagged or untagged
 - The EISS indication primitive always provides a vlan_identifier parameter
 - In the case "Port-and-Protocol-based VLAN Classification" (802.1Q Cl. 6.12) is not used
 - Tagged frames can be identified by:
 - vlan_identifier in the range 001-FFE, excluding PVID
 - And untagged frames by:
 - vlan_identifier = PVID

- msdu_mask dimensioning:
 - Number of (offset, length) couples
 - Unit of offset and length: bits or bytes
 - Max offset value, max length value
- Would we really need any finer granularity in the definition of the da_, sa_ and vlan_id_ masks ?
 - i.e. use for each of these masks a definition similar to the msdu_mask's

Way Forward

ADDITIONS AND CHANGES TO 802.1CB

Changes in 802.1CB

- Addition of a new passive stream identification function in 802.1CB Clause 6
 - Sub-clause 6.8 "Bit field mask stream identification"*
 - Passive identification function that sits at the EISS interface with the uuper layers
 - Uses specific EISS's indication primitive parameters as input:
 - source_address, destination_address, vlan_identifier, mac_service_msdu
 - The function defines a set of bit fields obtained by masking these input parameters
 - The *stream_handle* produced by the function is derived from the matching of the bit field(s) with values defined by network management or stream establishment signaling.

*: name proposal

Changes in 802.1CB

- Clause 9 "Stream Identification Management"
 - Addition of a new tsnStreamIdIdentificationType
 - OUI: 00-80-C2, Type number: 5
 - Addition of managed objects (*tsnStreamIdParameters*) for bit field set identification
 - Sub-clause 9.1.6
 - See next slide
- Other clauses to be modified
 - 5 "Conformance"
 - Annex A "PICS"
- Additional clauses:
 - YANG model
 - Informative annex: example use of the function

Changes in 802.1CB

18

tsnStreamIdParameters

Name	Description
tsnCpeMmIdDestAddMask	48-bit mask to be applied to the destination_address parameter passed up by the EM_UNITDATA.indication primitive
tsnCpeMmIdDestAddMatch	N-bit value to be matched with the masked destination_address parameter
tsnCpeMmIdSrcAddMask	48-bit mask to be applied to the source_address parameter passed up by the EM_UNITDATA.indication primitive
tsnCpeMmIdSrcAddMatch	N-bit value to be matched with the masked destinationource_address parameter
tsnCpeMmIdVlanIdMask	12-bit mask to be applied to the vlan_identifier parameter passed up by the EM_UNITDATA.indication primitive
tsn Cpe MmId Vlan Id Match	N-bit value to be matched with the masked vlan_identifier parameter
tsnCpeMmIdMsduFieldNb	Number of bit fields to be matched in the mac_service_data_unit parameter passed up by the EM_UNITDATA.indication primitive (max value ?)
tsn Cpe Mmld Msdu Field Mask 1	Bit field mask, defined by the couple (Offset1, Length1), to be applied to the mac_service_data_unit parameter passed up by the EM_UNITDATA.indication primitive. Result of masking = MsduField1 (Offset and Length max values ?)
tsnCpeMmIdMsduFieldMatch1	Length1-bit value to be matched with MsduField1
tsnCpeMmIdMsduFieldMaskN	Bit field mask, defined by the couple (OffsetN, LengthN), to be applied to the mac_service_data_unit parameter passed up by the EM_UNITDATA.indication primitive. Result of masking = MsduFieldN
Mitsabisheedenckabiender	LengthN-bit value to be matched with MsduFieldN

- Is this new proposal acceptable from a technical content point of view ?
 - Any missing bits ?
 - Any switch / bridge implementer or user having issues with such an identification function ?
- Mature enough to start editing ?

Thank you for your attention

MITSUBISHI ELECTRIC Changes for the Better