eCPRI Transport Network Requirements Updates

Tero Mustala, Olivier Klein, David Chen January 15, 2019

eCPRI Transport Network Requirements

- Preliminary draft 0.1 available on the 31st of August 2017
- First version 1.0 published 24-October 2017
- The updated version 1.1, published 31st of January 2018, make a few editorial updates primarily for clarity
- Main changes in Version 1.2, published 25th of June 2018:
 - Table 1 "Split E and splits I_D, II_D, I_U requirements" has its High CoS Maximum One-way Frame Delay Performance split into 4 Latency classes (<u>http://www.ieee802.org/1/files/public/docs2018/cm-mustala-eCPRI-update-0718.pdf</u>)
 - Table 2 "Timing accuracy requirement" has its "Typical Applications" column removed and contents moved to a new Table 3. Also, a few notes are updated
 - Note 6: reference to [13] 3GPP TS38.104 "NR; Base Station (BS) radio transmission and reception", V15.1.0 added
 - Note 10: reference to [14] 3GPP TS38.133 "NR; Requirements for support of radio resource management", V15.1.0 added
 - Note 10: reference for Dual Connectivity added

One-way Packet Delay Requirements in 1.0


4.1. Per flow requirements

4.1.1. Split E and splits ID, IID, IU when running E-UTRA

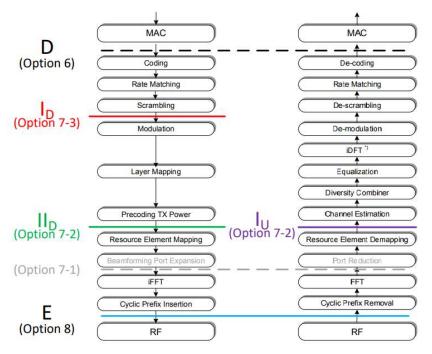
Table 1 is applicable for the functional decompositions splits E and I_D , I_D , I_U as defined in [1].

CoS Name	Example use	One-way maximum packet delay	One-way Packet Loss Ratio	
High	User Plane	100 µs		
Medium	User Plane (slow), C&M Plane (fast)	1 ms	10 ⁻⁷	
Low C&M Plane		100 ms	10 ⁻⁶	

Table 1 Split E and splits ID, ID, IU requirements

NOKIA

One-way Frame Delay Requirements in 1.2


4.1. Per flow requirements

4.1.1. Split E and splits ID, IID, IU

Table 1 is applicable for the functional decompositions splits E and ID, IID, IU as defined in [1].

Table 1 Split E and splits ID, ID, IU requirements

CoS Name	Example use	Maximum One-way Frame Delay Performance (see section 2.3.1)	Maximum One-way Frame Loss Ratio Performance (see section 2.3.2)		
High	User Plane (fast)	See Table 1.A	10-7		
Medium	User Plane (slow), C&M Plane (fast)	1 ms	10-7		
Low	C&M Plane	100 ms	10-8		

NOKIA

One-way Frame Delay Requirements in 1.2 Table 1. Requirements for fast User Plane

To enable usage of Transport Networks with different characteristics (different number of switching hops, different length of fiber links, ...), four different latency classes for CoS 'High' are defined in Table 1A. The maximum one-way frame delay requirement value includes fiber propagation delay and switching delay (see section 2.3.1).

A Transport Network supplier needs either to comply with per data-flow requirements or to state which latency classes for data flows the Network supports for a given average bandwidth usage.

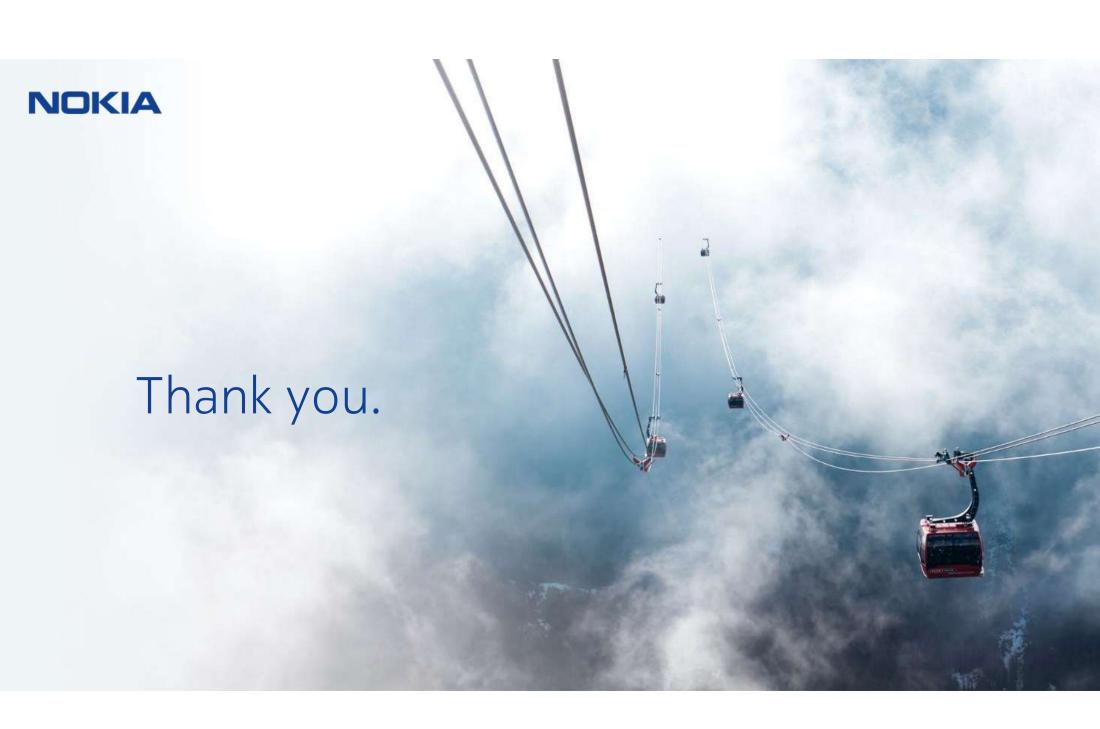
Latency Class	Maximum One-way Frame Delay Performance (see section 2.3.1)	Use case		
High25	25 µs	Ultra-low latency performance		
High100	100 µs	For full E-UTRA or NR performance		
High200	200 µs	For installations where the lengths of fiber links are in the 40 km range		
High500 500 µs		Large latency installations		

Table 1A Split E and splits ID, IID, IU Latency classes for CoS 'High'

For latency classes High25 and High100, a transport network delay budget larger than the one specified (thus a smaller delay budget for the eREC/eRE) may degrade the mobile network performance.

NOKIA

NOKIA


eCPRI Timing Accuracy Requirements

- Version 1.2, published 25th of June 2018, made the following changes.
 - A new Table 3 "Timing accuracy category requirement for various 3GPP features and RANs" added

Category (note 1)	Time error requirements at UNI, TE		ts at UNI,	Typical applications and time alignment error (TAE) requirements at antenna ports of eREs (for information)		3GPP feature	RAN		
			1					LTE	NR
	Case 1 (note 2)		Case 2 (note 3)	Typical applications	TAE	MIMO or	IIMO or TX-diversity transmission	Category A+	Category A+
	Case 1.1 (note 4)	Case 1.2 (note 5)				Intra-	Intra-band contiguous carrier aggregation	Category A	BS Type 1: Category E BS Type 2: Category A
A+	N.A.	N.A.	20 ns (relative)	MIMO or TX diversity transmissions, at each carrier frequency	65 ns (note 6)		Intra-band non-contiguous carrier aggregation Inter-band carrier aggregation	Category B Category B	Category C Category C
A	N.A.	60 ns (relative) (note 7)	70 ns (relative)	Intra-band contiguous carrier aggregation, with or without MIMO or TX diversity	130 ns (note 6)	V1.2	TDD Dual Connectivity	Category C Category C	Category C Category C
В	100ns (relative) (note 7)	190 ns (relative) (note 7)	200 ns (relative)	Intra-band non-contiguous carrier aggregation, with or without MIMO or TX diversity, and Inter-band carrier aggregation, with or without MIMO or TX diversity	260 ns (note 6)		COMP Supplementary Uplink In-band Spectrum Sharing	Not specified in 3GPP Not applicable for LTE Not ready in 3GPP	Not ready in 3GPP Not ready in 3GPP Not ready in 3GPP
C (note 8)	(abs	00 ns solute) ote 9)	1100 ns (absolute) (note 9)	3GPP LTE TDD	3 us (note 10)		Positioning MBSFN	Not specified in 3GPP Not specified in 3GPP	Not ready in 3GPP Not ready in 3GPP

- Version number on References [7] 3GPP TS36.104 and [8] 3GPP TS36.133 added

V1.0/1.1

