Bounded Latency Applications over Service Provider Networks

Tongtong Wang

Huawei Technologies

IEEE 802.1 TSN, 2019 Jan Hiroshima

Low latency and deterministic networking drives revenue

- On-Demand 4K video will increase network load and latency requirements;
- Cloud VR/AR services come with stringent latency expectations;
- IoT connects billions of devices with their own latency requirements;
- 5G applications further add to density of networks and rigorous latency specifications;
- Web-scale networking are global in nature and low latency by design;

There are multiple transport techniques that can provide these kind of service, What TSN Ethernet can help?

5G uRLLC Progress

Figure 8: Timeline of 5G standardization (blue) and deployments (green)

What TSN Ethernet can help?

During R-16 period (delayed 3 months), specific interests of industrial domain will be addressed more thoroughly.

- Connected factories;
- Electricity monitor and control;
- V2X with 5G NR;

China/US/Japan/Europe start to invest on V2X

market

https://www.5g-acia.org/fileadmin/5G-ACIA/Publikationen/Whitepaper_5G_for_Connected_Industries_and_Automation/WP_5G_for_Connected_Industries_and_Automation_Korrektur_Download.pdf

Bounded Low Latency Private Lines

Tata Communications provide global low latency Ethernet, connecting the most important economic centers in the world.

China Telecom in Shanghai provides a bounded low latency network, which is highly praised by low latency applications users;

Shorter bounded delay in center circles;

VR Could Be Big Soon

Cloud VR market is growing and early deployment may be in Asia.

Timing is everything

Go east, young man

Digi-Capital Augmented/Virtual Reality Regional Revenue 2020F

https://www.digi-capital.com/news/2016/01/augmentedvirtual-reality-revenue-forecast-revised-to-hit-120-billion-by-2020/

Cloud VR Demonstrations

China Mobile and Huawei release worlds first operator cloud VR in 2018

Other vendors and operators are also making similar demos in 2018/2019;

© Flickr/cc-licence/makeus

[KT's demonstration, the world's first VR on IPTV, through Olleh tv]

Cloud VR	Operators
----------	------------------

China Mobile;

China Telecom;

China Unicom;

LG U+;

KT;

Others

https://www.telecomtv.com/content/vr-ar/huawei-helps-china-mobile-fujian-release-worlds-first-operator-cloud-vr-31764/

https://www.lightreading.com/mobile/5g/lg-u-to-launch-vr-only-app-in-line-with-5g-services/d/d-id/748584

https://www.netmanias.com/en/post/korea_ict_news/10892/iptv-kt-videostreaming/kt-presented-the-world-s-first-iptv-vr-service

5G Remote Surgery

China Unicom and Huawei made first 5G remote surgery demonstration in Fujian, China. (Jan 2019)

https://www.youtube.com/watch?v=yFR61jjL1vo

100ms delay over 50km distance.

MEF Use Cases

			Packet Delay Budget	Packet Error Loss Rate	
QCI	Resource Type	Priority	(PDB)	(PELR)	Example Services
			(See NOTE 1)	(See NOTE 2)	
1	GBR	2	100 ms	10 ⁻²	Conversational Voice
2		4	150 ms	10 ⁻³	Conversational Video (Live Streaming)
3		3	50 ms	10 ⁻³	Real Time Gaming
4		5	300 ms	10 ⁻⁶	Non-Conversational Video (Buffered Streaming)
5	Non-GBR	1	100 ms	10-6	IMS Signalling
6		6	300 ms	10 ⁻⁶	Video (Buffered Streaming) TCP-based (e.g., www, e-mail, chat, ftp, p2p file sharing, progressive video, etc.)
7		7	100 ms	10 ⁻³	Voice, Video (Live Streaming) Interactive Gaming
8		8	300 ms	10-6	Video (Buffered Streaming) TCP-based (e.g., www, e-mail, chat, ftp, p2p
9		9			file sharing, progressive video, etc.)

Smart grid, Online game, Cloud AR/VR are also possible applications over SP networks.

* Use case description from MEF 22.3, informative.

Consideration in TSN for Service Provider Networks

• We (the Task Group) need to select a set of representative use cases that cover most of the market.

- We need to select one or a few techniques that will satisfy these use cases.
- The document needs to supply the tools necessary for a prospective SP user to determine what TSN tools are needed for a particular network.

Thank you.

把数字世界带入每个人、每个家庭、 每个组织,构建万物互联的智能世界。 Bring digital to every person, home, and organization for a fully connected, intelligent world.

