Use Case – Network Reliability from the Perspective of Autonomous Driving

Allan Zhu, July 2019
The Impact of Autonomous Driving on E/E Architecture

Source: SAE International, J3016_201806: Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles
Reliability is the Key Requirement for the IVNs

- The safety of an autonomous driving system relies on network reliability, besides others...

- **Two Levels of Network Reliability**
 - Reliability of Network Elements:
 - Sensors/actuators, gateways/switches, interfaces/links, ECUs/central computers
 - Reliability mainly determined by the manufacturers who build them
 - Reliability of Networks:
 - Redundancy of key network elements and communication links, fast failure detection and switch over
 - Reliability mainly determined by the design of the in-vehicle network

- **These two levels of reliability compensate each other, to some degrees**
 - A well designed, highly reliable network will improve the level of system reliability.

- **In this contribution, we focus on the network-level reliability.**
Redundancy Improves Network Reliability

- **Defining reliability/risk**
 - **Automotive Safety Integrity Level (ASIL)** – a risk classification scheme defined by the ISO 26262 - Functional Safety for Road Vehicles standard.
 - The ASIL to be achieved should be considered at the beginning of the system design.
 - There are four ASILs identified by the standard: ASIL-A, ASIL-B, ASIL-C, and ASIL-D.
 - ASIL-D dictates the highest integrity requirements on the product and ASIL A the lowest.

- **Redundancy improves reliability**
 - ASIL-D = ASIL-B + ASIL-B
 - The reliability of two redundant ASIL-B network can provide the same reliability of a ASIL-D network.

Source: [Synopsys](#)
Source: [National Instruments](#)
Dealing with Varieties of Redundancy

- Architecture could be domain-based or zone-based;
- Communication functions and computing functions could be co-located in same physical devices, or could be separated in different entities;
- Network may have 2 to 4 gateways/controllers

Scenario #1: All computational work is done at the central computer, with redundancy inside the central computer; Ring topology provides link level redundancy.

Scenario #2: Computational work is distributed in different GWs; Further, same function is deployed in different GWs to provide computational redundancy.
Use Case: A 3-Gateway Network

- **Network Description**
 - 2 central computers with 3 gateways;
 - 2 central computers connect to each other;
 - 3 gateways are interconnected by a ring;
 - Each central computer has at least one direct connection to one of the gateways.

- **Redundancy Requirements**
 - **Computer Redundancy**: 2 central computers back up each other in real time; when one fails, the other will take over all the computation work within pre-determined time limit;
 - **Communication Redundancy**: when any one link fails, there is one or more links to connect a gateway to a central computer. This new link needs to have enough bandwidth to handle traffic that could have been doubled.
 - Example: when Link 5 breaks, traffic from GW1 has to go through Link 1 → Link 2 → Link 3 to Central Computer #2;
 - Further, traffic from GW2, which used to have two options to reach central computers, now has only the Link 2 → Link 3 option.
 - In this case, Link 2 and Link 3 have to carry overflowed traffic from GW1;
 - Extra bandwidth needs to be considered and reserved for these links at the system design phase.
Failure Detection and Switching Time – the Key for Redundant Approach

- Different sensors have different sensing frequencies.

- How much sensory data can we afford to lose?
 - Assume:
 - A camera’s frame rate is 30FPS;
 - The car runs at 120km/hr (~75miles/hr);
 - Failure detection and switching over cause 1 frame lost at the central computer.
 - Result:
 - The car will run for 1.11m at this duration (inter-frame time is 33.3ms)

- How to ensure non-Ethernet traffic’s latency requirement over Ethernet?
 - Assume we encapsulate CAN frames and carry them using Ethernet;
 - CAN has a typical transmit period of 10ms (min 5ms).
 - How many CAN frames can we afford to lose?
 - Example: consider these CAN signals are braking signals to be sent to the brakes.

<table>
<thead>
<tr>
<th>Device</th>
<th>Data Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cameras</td>
<td>30/60/…/FPS</td>
</tr>
<tr>
<td>Ultrasonic Radar</td>
<td>100Hz</td>
</tr>
<tr>
<td>mmWave Radar</td>
<td>50Hz</td>
</tr>
<tr>
<td>Lidar</td>
<td>20Hz</td>
</tr>
</tbody>
</table>
Bandwidth Requirements

- Autonomous driving relies on various types of sensors;
- Sensor fusion accumulates data at gateways and send to central computers;
- Some sensory data requires high bandwidth
 - Example: at 1Gbps, we cannot even transmit one single uncompressed 1080p video stream with 16bit dynamic range at 30FPS.
- When any of the backbone links fail, alternate links will need to take over the traffic;
 - This imposes additional bandwidth requirements for backbone links.
- To prepare for the future, the TSN Automotive Profile shall determine a backbone link speed that is high enough to support autonomous driving.
 - We suggest minimum backbone link speed at 1Gbps.
 - For the standard to be future-proved, the link speed should be > 1Gbps.

Image Quality vs Bandwidth

<table>
<thead>
<tr>
<th>FPS</th>
<th>Hres</th>
<th>Vres</th>
<th>Fps</th>
<th>16bit 96dB</th>
<th>20bit 120dB</th>
<th>24bit 140dB</th>
<th>32bit 180dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>1280</td>
<td>720</td>
<td>30</td>
<td>0.55</td>
<td>0.6875</td>
<td>0.825</td>
<td>1.1</td>
</tr>
<tr>
<td>1080p</td>
<td>1920</td>
<td>1080</td>
<td>30</td>
<td>1.25</td>
<td>1.55</td>
<td>1.8625</td>
<td>2.4875</td>
</tr>
<tr>
<td>2k</td>
<td>2560</td>
<td>1440</td>
<td>30</td>
<td>2.2125</td>
<td>2.7625</td>
<td>3.3125</td>
<td>4.425</td>
</tr>
<tr>
<td>4k</td>
<td>3840</td>
<td>2160</td>
<td>30</td>
<td>4.975</td>
<td>6.225</td>
<td>7.4625</td>
<td>9.95</td>
</tr>
<tr>
<td>8k</td>
<td>7680</td>
<td>4320</td>
<td>30</td>
<td>19.913</td>
<td>24.888</td>
<td>29.863</td>
<td>39.813</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FPS</th>
<th>Hres</th>
<th>Vres</th>
<th>Fps</th>
<th>16bit 96dB</th>
<th>20bit 120dB</th>
<th>24bit 140dB</th>
<th>32bit 180dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>1280</td>
<td>720</td>
<td>30</td>
<td>1.1</td>
<td>1.375</td>
<td>1.65</td>
<td>2.2</td>
</tr>
<tr>
<td>1080p</td>
<td>1920</td>
<td>1080</td>
<td>30</td>
<td>2.5</td>
<td>3.1</td>
<td>3.725</td>
<td>4.975</td>
</tr>
<tr>
<td>2k</td>
<td>2560</td>
<td>1440</td>
<td>30</td>
<td>4.425</td>
<td>5.525</td>
<td>6.625</td>
<td>8.85</td>
</tr>
<tr>
<td>4k</td>
<td>3840</td>
<td>2160</td>
<td>30</td>
<td>9.95</td>
<td>12.45</td>
<td>14.925</td>
<td>19.9</td>
</tr>
<tr>
<td>8k</td>
<td>7680</td>
<td>4320</td>
<td>30</td>
<td>39.826</td>
<td>49.776</td>
<td>59.726</td>
<td>79.626</td>
</tr>
</tbody>
</table>

Note: the data rates are in the unit of Gbps, and include 20% protocol overhead.

Image quality is determined by three key parameters, resolution, dynamic range and frame rate.
Summary

- Redundancy is one of the major approaches to achieve high reliability for IVNs;

- Fast failure detection and switching over to backup devices/links are the keys for this approach to be meaningful;
 - Failure detection and switching is suggested to be done within **10ms**, better within 1ms.
 - Transmitting the same frames over multiple paths will be able to provide zero-delay switch over; e.g., using frame replication and elimination for reliability;
 - Need to balance performance and cost when this approach is used.

- Backbone links need to be designed with extra bandwidth in order to handle overflowed traffic from failure devices/links;
 - Backbone link speed is suggested to be at least **1Gbps**, better higher than 1Gbps, to support autonomous driving.
Thank You!