Automotive E/E Architecture evolution and the impact on the network

IEEE802 Plenary, March 2019, 802.1 TSN

Helge Zinner, Julian Brand, Daniel Hopf, Continental AG
Content of this presentation

› Introduction of E/E architecture trend
› Network implication for TSN features
› Types of automotive Ethernet TSN nodes
Definitions

› 10 Mbit/s (e.g. IEEE P802.3cg 10BASE-T1) was not taken into account

› Only Ethernet was taken into account (no CAN, LIN, SerDes …)

› Arrows in drawings of communication indicate logical data flow, NOT half-duplex connections

› There is no “one common” E/E architecture among the car manufacturers
 › Every car manufacturer uses its own architecture (different number of hops & requirements)
 › But the main concept is often similar
Automotive E/E architecture
Current state and outlook

Today: Traditional architecture
- application-specific ECUs
- application-specific bus systems
- 1-to-1 communication

In development: Domain architecture
- application-specific ECUs
- functional consolidation in domain controllers
- 1-to-1, “many-to-one” communication

Tomorrow: Centralized architecture
- software-driven architecture
- centralized processing
- “all-to-some” communication
Automotive E/E architecture

Characteristics

<table>
<thead>
<tr>
<th>Network topology</th>
<th>topology</th>
<th>point-to-point, star</th>
<th>point-to-point, star, ring</th>
<th>point-to-point, star, multiple rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>no. of hops for a stream</td>
<td>1-2</td>
<td>2-4</td>
<td>3-6</td>
<td></td>
</tr>
<tr>
<td>link speed</td>
<td>100 Mbit/s</td>
<td>10 Mbit/s – 10 Gigabit/s</td>
<td>10 Mbit/s – 50 Gigabit/s</td>
<td></td>
</tr>
<tr>
<td>no. of Ethernet links</td>
<td>< 10</td>
<td>10 - 50</td>
<td>> 50</td>
<td></td>
</tr>
<tr>
<td>no. of congestion points for a stream</td>
<td>0-1</td>
<td>1-3</td>
<td>2-5</td>
<td></td>
</tr>
<tr>
<td>no. of segments (VLANs, IP-networks)</td>
<td>< 8</td>
<td>< 8</td>
<td>> 8</td>
<td></td>
</tr>
</tbody>
</table>

Information here is based on educated guess, no full centralized architectures are in development today yet
Automotive E/E architecture Characteristics

<table>
<thead>
<tr>
<th>Data characteristics</th>
<th>< 8</th>
<th>< 8</th>
<th>> 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>no. of different traffic classes at congestion points</td>
<td>< 8</td>
<td>< 8</td>
<td>> 8</td>
</tr>
<tr>
<td>no. of streams at congestion points</td>
<td>< 10</td>
<td>< 50 at domain controller</td>
<td>> 200 (at Server)</td>
</tr>
<tr>
<td>typical latency requirements</td>
<td>milliseconds (2 digits)</td>
<td>milliseconds (1-2 digits)</td>
<td>microseconds (2-3 digits)</td>
</tr>
<tr>
<td>typical target of traffic load per link</td>
<td>mid to high</td>
<td>mid</td>
<td>low (at vehicle SOP)</td>
</tr>
<tr>
<td>typical L2 frame size</td>
<td>64 Byte, 1500 Byte</td>
<td>64 Byte, 1500 Byte</td>
<td>> 64 Byte (no encapsulation)</td>
</tr>
<tr>
<td>periodicity of data</td>
<td>various types</td>
<td>various types</td>
<td>various types</td>
</tr>
<tr>
<td>time synchronization requirements</td>
<td>milliseconds (1 digit)</td>
<td>milliseconds (1 digit)</td>
<td>microseconds (2-3 digits)</td>
</tr>
<tr>
<td>dynamic network configuration</td>
<td>very little</td>
<td>little</td>
<td>partially</td>
</tr>
</tbody>
</table>

Information here is based on educated guess, no full centralized architectures are in development today yet.
Classes of Ethernet devices
Example use case: Object detection camera in system context (simplified illus.)

Sensor (Talker) Zone controller with Bridge Server w. Bridges (Listener + Talker) Zone controller with Bridge Actuator (Listener)

Camera X X X X Steering system

High data rate very high data rate very high data rate very low data rate

One stream many streams w. different TC even more streams w. different TC many streams w. different TC one stream

TC = Traffic Class
Classes of Ethernet devices
Types of different TSN automotive implementation: Profiles?

› TSN Endpoints
 › Single port Talker/Listener
 › focus: safety relevant data processing e.g. server, antenna module
 › other:
 › Single port Talker only (back channel data is not time critical)
 › focus: safety relevant sensors for ADAS (Cameras, Radars, Lidars,...)
 › other: microphone
 › Single port Listener only (back channel data is not time critical)
 › focus: safety relevant actuators (steering, braking, display)
 › other: speaker
Classes of Ethernet devices
Types of different TSN automotive implementation: Profiles?

› TSN Bridges
 › 3-port bridge (supports ring topology)
 › access bridge (interface to outside vehicle networks)
 › focus: security
 › aggregation bridge (low port count)
 › aggregation bridge (high port count)
Classes of Ethernet devices

<table>
<thead>
<tr>
<th>Class</th>
<th>< 10</th>
<th>< 20</th>
<th>> 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Talker endpoints only</td>
<td>< 10</td>
<td>< 20</td>
<td>> 25</td>
</tr>
<tr>
<td>Listener endpoints only</td>
<td>< 5</td>
<td>< 10</td>
<td>< 20</td>
</tr>
<tr>
<td>Talker/Listener endpoints</td>
<td>< 5</td>
<td>< 10</td>
<td>< 10</td>
</tr>
<tr>
<td>3-port bridge</td>
<td>0</td>
<td>< 5</td>
<td>< 5</td>
</tr>
<tr>
<td>Aggregation bridge mid</td>
<td>1-2</td>
<td>< 5</td>
<td>< 10</td>
</tr>
<tr>
<td>Aggregation bridge high</td>
<td>0</td>
<td>< 3</td>
<td>< 5</td>
</tr>
</tbody>
</table>

Information here is based on educated guess, no full centralized architectures are in development today yet.