

Automotive E/E Architecture evolution and the impact on the network

IEEE802 Plenary, March 2019, 802.1 TSN

Helge Zinner, Julian Brand, Daniel Hopf, Continental AG

Content of this presentation

- > Introduction of E/E architecture trend
- > Network implication for TSN features
- > Types of automotive Ethernet TSN nodes

P802.1DG – TSN Profile for Automotive In-Vehicle Ethernet Communications Public

Definitions

- > 10 Mbit/s (e.g. IEEE P802.3cg 10BASE-T1) was not taken into account
- > only Ethernet was taken into account (no CAN, LIN, SerDes ...)
- arrows in drawings of communication indicate logical data flow, NOT half-duplex connections
- > there is no "one common" E/E architecture among the car manufacturers
 - > every car manufacturer uses its own architecture (different number of hops & requirements)
 - but the main concept is often similar

Automotive E/E architecture Current state and outlook

Today: Traditional architecture

- > application-specific ECUs
- > application-specific bus systems
- > 1-to-1 communication

In development: Domain architecture

- > application-specific ECUs
- functional consolidation in domain controllers
- > 1-to-1, "many-to-one" communication

Tomorrow: Centralized architecture

- > software-driven architecture
- centralized processing
- > "all-to-some" communication

🗿 ntinental 🏂

P802.1DG – TSN Profile for Automotive In-Vehicle Ethernet Communications Public

Automotive E/E architecture Characteristics

Network topology			
topology	point-to-point, star	point-to-point, star, ring	point-to-point, star, multiple rings
no. of hops for a stream	1-2	2-4	3-6
link speed	100 Mbit/s	100 Mbit/s – 10 Gigabit/s	100 Mbit/s – 50 Gigabit/s
no. of Ethernet links	< 10	10 - 50	> 50
no. of congestion points for a stream	0-1	1-3	2-5
no. of segments (VLANs, IP- networks)	< 8	< 8	> 8

Information here is based on educated guess, no full centralized architectures are in development today yet

P802.1DG – TSN Profile for Automotive In-Vehicle Ethernet Communications Public

Automotive E/E architecture Characteristics

Data characteristics			
no. of different traffic classes at congestion points	< 8	< 8	> 8
no. of streams at congestion points	< 10	< 50 at domain controller	> 200 (at Server)
typical latency requirements	milliseconds (2 digits)	milliseconds (1-2 digits)	microseconds (2-3 digits)
typical target of traffic load per link	mid to high	mid	low (at vehicle SOP)
typical L2 frame size	64 Byte, 1500 Byte	64 Byte, 1500 Byte	> 64 Byte (no encapsulation)
periodicity of data	various types	various types	various types
time synchronization requirements	milliseconds (1 digit)	milliseconds (1 digit)	microseconds (2-3 digits)
dynamic network configuration	very little	little	partially

Information here is based on educated guess, no full centralized architectures are in development today yet

Public

Example use case: Object detection camera in system context (simplified illus.)

7

Zinner, Brand, Hopf, Continental AG

Types of different TSN automotive implementation: Profiles?

- > TSN endpoints
 - single port talker/listener
 - > focus: safety relevant data processing e.g. server, antenna module
 - > other:
 - > single port talker only (back channel data is not time critical)
 - b focus: safety relevant sensors for ADAS (Cameras, Radars, Lidars,...)
 - > other: microphone
 - > single port listener only (back channel data is not time critical)
 - focus: safety relevant actuators (steering, braking, display)
 - other: speaker

Types of different TSN automotive implementation: Profiles?

- > TSN bridges
 - 3-port bridge (supports ring topology)
 - access bridge (interface to outside vehicle networks)
 - > focus: security
 - > aggregation bridge (low port count)
 - aggregation bridge (high port count)

Z

Types			
no. of talker endpoints only	< 10	< 20	> 25
no. of listener endpoints only	< 5	< 10	< 20
no. of talker/listener endpoints	< 5	< 10	< 10
no. of 3-port bridges	0	< 5	< 5
no. of aggregation bridges mid	1-2	< 5	< 10
no. of aggregation bridges high	0	< 3	< 5

Information here is based on educated guess, no full centralized architectures are in development today yet

P802.1DG – TSN Profile for Automotive In-Vehicle Ethernet Communications Public