
1

Protocol for
Extending LLDP

Paul Bottorff
Paul.Bottorff@hpe.com

mailto:Paul.Bottorff@hpe.com

2

Extending LLDP Agenda:

–Introduce New Definitions
–Motivations and Objectives
–Link Layer Discovery Extension Protocol Principles
–Shared CSMA/CD Ethernet Worst Case Operation
–Summary and New Definition Discussion

3

New Definitions: Hold Discussion Until End Of Presentation

–Link Layer Discovery Foundation PDU (LLDFPDU,F-PDU): This is the single
LLDPv1 PDU. In context this can be shortened to “foundation PDU” or F-PDU.

–Link Layer Discovery Extension PDU (LLDXPDU,X-PDU): This is an extension PDU
for the LLDP database. In context this can be shortened to “extension PDU” or X-PDU.

–Link Layer Discovery Extension Request PDU (LLDXREQPDU,XREQ-PDU): This
PDU is a request for transmission of one or more X-PDUs. In context this can be
shortened to “request PDU” or XREQ-PDU.

–Link Layer Discovery Extension Protocol (LLDXP): This is the protocol used to
exchange the extension PDUs of a multi-frame database.

–Manifest TLV: This is an LLDP TLV which describes each X-PDU of an Extended
LLDP Database.

–Extension PDU Identifier TLV (XID TLV): This is an LLDP TLV carried in an X-PDU
used to help identify the PDU.

–Extension Request TLV (XREQ TLV): This is an LLDP TLV carried in a RFXPDU and
used to identify the requested X-PDUs.

4

Extending LLDP Agenda:

–Introduce New Definitions
–Motivations and Objectives
–Link Layer Discovery Extension Protocol Principles
–Shared CSMA/CD Ethernet Worst Case Operation
–Summary and New Definition Discussion

5

Discovery Protocols
– New IETF work on Link State Vector Routing (lsvr) has resulting in development of a discovery protocol called

Layer 3 Data Link (l3dl) also IETF bgp group has a contribution for neighbor discovery protocol
– The lsvr draft in progress is: https://tools.ietf.org/pdf/draft-ietf-lsvr-l3dl-02.pdf
– The idr contribution is: https://tools.ietf.org/pdf/draft-xu-idr-neighbor-autodiscovery-11.pdf

– Work recently completed at IEEE on extensions to Virtual Station Interface Discovery and Configuration Protocol
(VDP, 802.1Q-2018 clauses 40, 41, and 43) extends VDP to cover IP addressing for split NVE of NVO3
(802.1Qcy-2019)

– Work in progress at IEEE on Auto Attach (P802.1Qcj) which is currently described for Provider Backbone
Bridges
– Open source for LLDP auto attach is at: https://github.com/auto-attach/aa-lldpd
– Provides discovery of VID to I-SID mapping for BEBs attaching to servers

– New IEEE project on LLDPv2 (802.1ABdh)
– Purpose is to extend LLDP to scale existing LLDP applications, and add enhancements for router and TSN applications
– The LLDPv2 project will be an amendment of 802.1AB-2016 (P802.1ABdh)
– The LLDPv2 project will allow LLDPv2 databases consisting of multiple frames
– LLDPv2 and LLDPv1 nodes will interoperate as though they were LLDPv1 with a single frame database
– LLDPv2 should be sufficient to fill most discovery needs without the additional protocols

https://tools.ietf.org/pdf/draft-ietf-lsvr-l3dl-02.pdf
https://tools.ietf.org/pdf/draft-xu-idr-neighbor-autodiscovery-11.pdf
https://github.com/auto-attach/aa-lldpd

6

Objectives for New LLDPv2 Method

– Support LLDP databases larger than a single frame
– Optimize LLDPv2 for databases around 100K bytes
– For reference IETF currently believes database sizes around 64K bytes are sufficient

– Support the ability to limit the LLDP frame size to meet timing constraints imposed by some TSN
applications
– Do we need to split TLVs over multiple PDUs?
– How big do these databases need to be?

– Support the ability to communicate with an LLDPv1 implementation
– Only the LLDPv1 database would be exchanged between and LLDPv1 and LLDPv2 implementation

– Support shared media, optimize for point-to-point though allows shared
– Duplicate MAC addressing should be handled by the extension protocol

– Ensure the integrity of the full set of TLVs received by partners
– Do we also need to provide a means to authenticate the LLDP database? The IETF has this requirement.

7

Objectives for New LLDPv2 Method

– Support pacing of PDUs to receivers to prevent overloading low level network firmware
– Historically OSPF and IS-IS have had problems from lack of flow and congestion management

– Reduce network traffic by reducing periodic transmission to the minimum
– Only update the foundation LLDPv1 PDU periodically
– Extension PDUs are only transmitted/updated on demand from receivers
– Update extension PDUs only when they have changed

– Other optimizations and considerations which might be useful
– Computational load requirements for LLDPv2 receivers to update and validate PDUs
– Larger TLVs or is using multiple TLVs appears sufficient
– TLVs spanning multiple extension database PDUs, is this required for TSN
– Database authentication, is high want for IETF and other applications

– Part of separate authentication extension
– Key exchange requirements

8

Extending LLDP Agenda:

–Introduce New Definitions
–Motivations and Objectives
–Link Layer Discovery Extension Protocol Principles
–Shared CSMA/CD Ethernet Worst Case Operation
–Summary and New Definition Discussion

9

Current LLDP Operation

NOTE: Remote and Local MIBs are databases that must fit within a single PDU length PDU
Replace all values of the Remote MIB with contents of LLDPDU when something changes

ChassisID
PortID
TTL

Local MIB

PortID
TTL

ChassisID
PortID
TTL

Remote MIB

rxInfoTTL

LLDP Agent

PortID
TTL

ChassisID
PortID
TTL

ChassisID
PortID
TTL

Remote MIB Local MIB

rxInfoTTL

LLDP Agent

rxProcessPDU()txTTR

rxProcessPDU()

rxProcessPDU()
SomethingChangedLocal()

SomethingChangedRemote()

10

Proposal: Foundation PDU (F-PDU)

– The current LLDPv1 PDU with a Manifest TLV is the foundation PDU (F-PDU)

– The foundation PDU is exchanged using the existing LLDPv1 protocol without modifications

– All databases are created as LLDPv1 databases, no extension PDUs create new databases

– An extended LLDP database is composed of the foundation PDU and n-1 extension PDUs

– A manifest TLV placed in the LLDPv1 foundation PDU identifies all extension PDUs

– If no manifest TLV is present in the foundation PDU then no extension PDUs exist for the LLDP database

– The upper limit to the number of PDUs is determined by the LLDPv1 TLV size limit (512) and the format of
the manifest TLV
– Note: When we have a small max PDU size the manifest TLV size can be further limited resulting in

limiting the database size

– The manifest TLV carries an identifier for each extension PDU

– Any change in an extension PDU is reflected as a change in the manifest TLV, therefore

– Any change in an extension PDU will result in a change to the foundation PDU

11

Proposal: Extension PDUs (X-PDUs)

– The extension LLDPDU will be ignored by LLDPv1
– An alternate Ethertype is used for LLDPv2 PDUs to guarantee PDUs are never directed to LLDPv1

– Each extension PDU has three mandatory TLVs in the beginning of the PDU:
– Each extension PDU contains the first two mandatory TLVs of a LLDPDUv1 (ChassisID + PortID)
– Each extension PDU contains a new extension TLV that identifies the PDU
– Before an extension PDU is added to a database it’s {ChassisID, PortID, ExtensionID} must match the

manifest TLV

– Each extension PDU is transmitted as a unicast in response to a receiver request
– Extension PDUs are only transmitted in response to requests
– The DA of an Extension PDU is the SA of the request

– The TTL in foundation PDU relates to all extension PDUs

12

Proposal: Extension Request PDU (XREQ-PDU)

– The extension Request PDU will be ignored by LLDPv1
– An alternate Ethertype is used for LLDPv2 PDUs to guarantee PDUs are never directed to LLDPv1

– Each extension request PDU has three mandatory TLVs in the beginning of the PDU:
– Each contains the first two mandatory TLVs of a LLDPDU (ChassisID + PortID)

– However the ChassisID and PortID are for the destination rather than the source
– Each contains a new extension request TLV that identifies the PDUs a list of extension PDU to be transmitted

– An extension request (XREQ-PDU) is sent between peers to request transmission of an extension PDU
– The LLDP extension protocol supports multiple peers on a shared media
– Transmission of X-PDUs is only in response to an XREQ-PDU generated by the receiving system
– A receivers requests X-PDU transmission when it determines the current X-PDU does not match the manifest TLV
– Receivers can have only a single XREQ-PDU pending at a time
– A single XREQ-PDU can request transmission of multiple X-PDUs
– The receiver controls the transmission rate by controlling the number of X-PDUs requested and the timing between XREQ-PDUs
– Receivers time out the requested X-PDU responses
– Transmitters periodically send the foundation F-PDU which can update the manifest TLV in turn resulting XREQs for X-PDUs

– Each extension request PDU is transmitted as a unicast
– The DA of an extension request PDU is the SA of the foundation PDU

13

Manifest TLV: Added to the Foundation LLDPv1 PDU

– Number of extension PDUs indicates the number of valid PDU descriptors in the manifest
– Some implementations may fix the manifest TLV size however load it with a variable number of PDUs
– If we don’t need to hold the manifest TLV size constant, then the TLV length is sufficient to determine the

number of manifest entries

– Each Extension PDU is identified by a:
– Extension LLDPDU number, this number is included in the manifest to facilitate PDU deletion and insertion
– Extension LLDPDU revision, updated modulo 256 on every change to the extension LLDPDU
– Extension LLDPDU check: for example 32 bits of MD5

TLV type
= MAN
(7 bits)

TLV information
String length

(9 bits)

Extension PDU
Check

(32 bits)

Extension PDU Descriptor
repeat n times (0 <= n <= 84)

1 2 n*6+10

Number of
Extension
PDUs = n

(7 bits)

3

R
es

Extension
LLDPDU
Number
(7 bits)

Extension
LLDPDU
Revision
(8 bits)

n*6+5n*6+4

R
es

n*6+6

14

Format for LLDP Extension PDUs (X-PDU)

– LLDPv2 Ethertype
– New LLDPv2 Ethertype for Extension PDUs prevents conflict with LLDPv1
– Extension PDUs are identified by the presence of the Extension Desc TLV
– Since extensions are not multicast and only delivered on request no new Ethertype is required, though one could be used if desired

– Chassis ID + Port ID are mandatory
– The Chassid ID and Port ID of the PDU source
– Note TTL from 1st PDU should apply and is not needed here

– Extension Identifier TLV is mandatory and must be the third TLV
– Identifies this Extension PDU, the PDU revision

DA SA
LLDP

Extension
Ethertype

Extension
Identifier

TLV
Optional

TLV
End of

LLDPDU
TLV

PortID
TLV

(source)

ChassisID
TLV

(source)
Optional

TLV

Ethernet Header
M M M

LLDP Extension PDU

15

Extension PDU Identifier TLV (XID TLV):

– Extension PDU Number is the designation number for this PDU
– The PDU number is in the range from 1 – 84
– Matched to the manifest extension PDU number

– Extension PDU revision number
– Incremented modulo 256 whenever the extension LLDPDU is changed
– Matched to the manifest to guarantee the extension LLDPDU is the one represented in the manifest

– Note the extension PDU check code is not carried in the Extension TLV and so must be calculated to
match the manifest check code

TLV type
= DESC
(7 bits)

TLV information
String length

(9 bits)

1 2 4

TLV Header TLV info

Extension
PDU

Number
(7 bits)

3

R
es

Extension
PDU

Revision
(8 bits)

5

16

Request For Extension PDUs (XREQ-PDU)

– LLDP Extension Ethertype
– New LLDP Ethertype for Extension PDUs to prevent conflict with LLDPv1 implementations

– ChasssisID and PortID TLVs are mandatory in a Request for Extension PDU
– ChassisID is the first and PortID is the second TLV in the PDU
– Unlike a standard LLDPDU the ChassisID and PortID identify the destination not the source

– Extension Request TLV is mandatory in a Request for Extension PDU
– The Extension Request TLV is the third TLV in the PDU
– Request PDUs are identified by the presence of the Request for Extension TLV

DA SA
LLDP

Extension
Ethertype

XREQ TLV
End of

LLDPDU
TLV

PortID
TLV

(destination)

ChassisID
TLV

(destination)

Ethernet Header

M M

LLDP Extension PDU

M

17

Extension Request PDUs TLV (XREQ TLV)

– Extension Request PDUs
– A given chassis/port may only have a single XREQ TLV pending at a time
– Multiple XREQs PDUs may be used to pace the PDUs at the receiver by withholding XREQs
– A single XREQ PDU may request multiple Extension PDUs if the receiver has sufficient buffer for them
– The bit map is used to identify the list of Extension LLDPDUs by number

– The index to the bit map identifies the Extension LLDPDU number

– Extension LLDPDUs are not multicast, instead they are unicast
– The extension LLDPDUs are sent to the SA address within the foundation LLDPDU
– On a shared media each individual LLDP Agent must provide independent requests for extension frames
– This allows the individual receivers to pace PDUs at rates that match their ability to handle the reception

TLV type
= DESC
(7 bits)

TLV information
String length

(9 bits)

Request PDUs
bitmap

(84 bits)

1 2 3 22

TLV Header TLV information string

R
es Bits

6

Request
Number
(8 bits)

18

Extending LLDP Agenda:

–Introduce New Definitions
–Motivations and Objectives
–Link Layer Discovery Extension Protocol Principles
–Shared CSMA/CD Ethernet Worst Case Operation
–Summary and New Definition Discussion

19

LLDP Extension Operation Proposal: Receiver Pacing

NOTE: Send LLDPDU as specified by LLDPv1 when something changes and periodically
Only send extension LLDPDU when explicitly requested by a XREQ
Only issue XREQ when manifest shows the local copy is out of date

ChassisID
PortID
TTL

Manifest

Local MIB

PortID
TTL

ChassisID
PortID
TTL

Manifest

Remote MIB

rxInfoTTL

LLDP Agent

PortID
TTL

ChassisID
PortID
TTL

Manifest

ChassisID
PortID
TTL

Manifest

Remote MIB Local MIB

rxInfoTTL

LLDP Agent

rxProcessPDU()

txTTR rxProcessPDU()

SomethingChangedRemote()

rxProcessManifest()

Extension Request PDU

Extension PDU

Extension Request PDU

Extension PDU

rxProcessXREQ() rxExtTTR

rxExtTTR

SomethingChangedLocal()

rxProcessExtPDU()

rxProcessExtPDU()
rxProcessXREQ()

20

Example Duplicate MACs on CSMA/CD Ethernet

– In this example we have duplicate unicast port MACs both on the same switch and other switches
– This example was chosen as a worst case example

– CSMA/CD delivered all frames to all ports connected to the LAN regardless of the destination address
– We have other types of shared media, for instance and WiFI, token rings, EPON which may behave somewhat differently
– On a CSMA/CD Ethernet end stations filter the delivered frames so they only receive unicast and multicasts programmed in the MAC

– Bridge ports operate as end stations directing frames to the bridge brain rather than the relay
– IEEE specifies an internal MAC for each Bridge Port which is used as the source of control frames such as LLDP
– Some Bridge implementations share a single unicast MAC between all ports

– On a shared media where it is possible to have duplicate MAC addresses we could receive a unicast transmission in multiple
places

1 2

PortIDTTL

LLDP Agent Port 1

Remotes Local

PortIDTTL

LLDP Agent Port 2

Remotes Local

1 2

PortIDTTL

LLDP Agent Port 1

Remotes Local

PortIDTTL

LLDP Agent Port 2

Remotes Local

1 2

PortIDTTL

LLDP Agent Port 1

Remotes Local

PortIDTTL

LLDP Agent Port 2

Remotes Local

Switch A Switch B Switch C

MAC A MAC A MAC B MAC B MAC A MAC B

21

Shared Media, Extension Request PDU, Duplicate Switch MACs
– Here we have an Extension Request (XREQ)

PDU addressed to bridge port with MAC A
sourced from bridge B with source MAC B

– The bridge port MAC A is duplicated on ports 1
and 2 of the bridge
– The bridge receives two copies of the XREQ
– These two copies are directed to the bridge brain for

processing

– The bridge brain uses the Destination ChassisID
and PortID to determine what database the PDU
is intended for

– The bridge brain uses the request number to
filter out duplicates

– A single response is generated from the correct
port

– If the XREQ was also delivered to some other
bridge the destination chassisID would be used
by the brain to filter it.
– In the example switch C has a duplicate MAC A port.

1 2

PortID
TTL

Port 1

Remotes Local

PortID
TTL

Port 2

Remotes Local

Switch A (MAC A)

Dest ChassisID = A Dest PortID = 1 Request# = 27

DA=A SA=B Type=LLDPv2

MAC A MAC A

22

Shared Media, Extension Response, Duplicate Switch MACs

– Here we have a Extension Response PDU addressed to bridge
port with MAC B from bridge A

– The bridge port MAC B is shared by ports 1 and 2 of the bridge
– The bridge receives two copies of the Response
– These two copies are directed to the bridge brain for processing

– The bridge brain uses the source ChassisID and PortID to
determine what databases the PDU is intended for
– If no database matches the ChassisID+PortID the PDU is

discarded

– The bridge brain checks to see if the PDU matches the manifest
by comparing the PDU Number, the PDU Revision, and
computing the checksum
– If the PDU does not match the manifest it is discarded

– If the PDU matches the manifest and also matches the current
extension PDU then it is discarded
– Note: this discards any duplicate PDUs

– If the PDU matches the manifest, however does not match the
current extension PDU, then the database is updated with the
new PDU
– Note: a single response PDU may update multiple port databases

– If another switch (i.e. switch C) also used a duplicate port MAC B
and if switch C also stored the same ChassisID+PortID database
with the same manifest TLV, then it also can update it’s database
as above.

1 2

PortID
TTL

Port 1

Remotes Local

PortID
TTL

Port 2

Remotes Local

Switch B (MAC B)

ChassisID = A PortID = 1 Extension TLV

DA=B SA=A Type=LLDPv2

MAC BMAC B

23

Extending LLDP Agenda:

–Introduce New Definitions
–Motivations and Objectives
–Link Layer Discovery Extension Protocol Principles
–Shared CSMA/CD Ethernet Worst Case Operation
–Summary and New Definition Discussion

24

Summary

–A Manifest TLV in the foundation LLDPv1 PDU is used to specify the extensions
– The Manifest TLV identifies the PDU number, revision, and a check code
– Using an 7 bit PDU number, 8 bit PDU revision, and 32 bit check code allows up to 84 PDUs in

the manifest

–A unicast protocol can operate in the face of duplicate MACs on shared media
– The unicast protocol allows receiver pacing for PDU reception
– The receiver may also control re-transmission for reliable delivery of extension PDUs

–Extension PDU updates are only required when the current revision is out of date
– The foundation PDU which includes the Manifest TLV is updated periodically and whenever

something changes
– If any extension PDU changes then a change will occur in the Manifest TLV in the foundation

PDU
– LLDP determines if an extension PDU needs to be updated by comparing the manifest with the

current database

25

New Definitions: Discussion

–Link Layer Discovery Foundation PDU (LLDFPDU,F-PDU): This is the single
LLDPv1 PDU. In context this can be shortened to “foundation PDU” or F-PDU.

–Link Layer Discovery Extension PDU (LLDXPDU,X-PDU): This is an extension
PDU for the LLDP database. In context this can be shortened to “extension PDU” or
X-PDU.

–Link Layer Discovery Extension Request PDU (LLDXREQPDU,XREQ-PDU): This
PDU is a request for transmission of one or more X-PDUs. In context this can be
shortened to “request PDU” or XREQ-PDU.

–Link Layer Discovery Extension Protocol (LLDXP): This is the protocol used to
exchange the extension PDUs of a multi-frame database.

–Manifest TLV: This is an LLDP TLV which describes each X-PDU of an Extended
LLDP Database.

–Extension PDU Identifier TLV (XID TLV): This is an LLDP TLV carried in an X-PDU
used to help identify the PDU.

–Extension Request TLV (XREQ TLV): This is an LLDP TLV carried in a RFXPDU
and used to identify the requested X-PDUs.

Thank You

Backup Slides

28

Datacenter Network Using LSVR
– Most datacenters are configured as

2-3 layer Clos networks using
ECMP for distribution over the mesh
and LAGs/M-LAGs for server
attachment

– Typically these networks provide an
IPv4/IPv6 topology organized with
ToR and Spine switches within Pods
(around 8-128 racks)

– Servers at the network edge
manage virtual and tenant networks
which are encapsulated into the IP
packets for transmission over the
data center

– The orchestrator controls the
creation of the virtual and tenant
networks along with coupling to
services

Leaf Switch
Top-Of-Rack

Spine Switch

Core Switch

ECMP Mesh

ECMP Mesh

LSVR
Datacenter

Network

Server Racks

D
ata C

enter O
rchestration

29

Typical Server and Switch Rack Configuration

– Here the Bridge portion of the Top
Of Rack Switch couples physical
ports to each server in the rack

– Over the Bridge Ports VLANs are
distributed to each server

– For each VLAN within the rack an
IP subnet is assigned

– Each router port in the Top Of Rack
is coupled to a single VLAN which
is mapped onto an IP subnet

– Protocols within the switch (in this
case LSVR) advertise the subnets
available within the rack to the rest
of the network

Bridge Router

Top Of Rack (ToR)
Spine R

outers

Router Port
VLAN1, IP1

Router Port
VLAN2, IP2

Router Port
VLAN3, IP3

VLAN 1
VLAN 2
VLAN 3

Rack

LSVR Data Center Network

Data Center Orchestration

Rest APIs

30

Server Network Interfaces – Virtual Machines (i.e. VMWare)

– Virtual Station Interface (VSI, defined in IEEE Std 802.1Q-2018): is an internal LAN which connects between a virtual
NIC and a virtual Bridge Port

– Virtual Access Point (VAP): A logical connection point on the Network Virtualization Edge (NVE) for connecting a
Tenant System to a virtual network

– DC network is a simple IP underlay network. For scaling L3 encapsulations are supported using “NVE like”
procedures within the server controlled by Data Center Orchestration

VM

VM

VM

VM

vNVEish
Overlay
Encaps

VM Edge Server Edge

Hypervisor

vBridge

VM

Data Center Orchestration

Bridge Router

Top Of Rack

VLAN 1

VLAN 2
Spine R

outers

Router Port
VLAN1, IP1

Router Port
VLAN2, IP2

A Port

A MAC with Address

A IP Port with Address
A Virtual Access Point

A Virtual Station Interface

Rest APIs

31

Server Network Interfaces – Containers (i.e. Docker)

– Container Solutions use Linux Namespaces and Groups to isolate containers
– These solutions provide a variety of network connections, though use an overlay for large scale datacenters
– DC network is a simple IP network. For scaling L3 encapsulations are supported using “NVE like” procedures within the server

controlled by Data Center Orchestration

OS Kernel

Data Center Orchestration

Bridge Router

Top Of Rack

VLAN 1

VLAN 2

VLAN 3

Spine R
outers

Router Port
VLAN1, IP R1

Router Port
VLAN2, IP R2

Router Port
VLAN3, IP R3

Container

Sandbox

Container

Sandbox

Container

Sandbox

N
etw

ork
N

etw
ork

Engine

IPAM Driver

N
etw

ork Infrastructure

Network
Drivers

Host

Bridge

Overlay
Encaps

MACVLAN

Other

Server EdgeContainer Edge

A Port

A MAC with Address

A IP Port with Address

Rest APIs

32

Shared Media Types

CSMA/CD Token/Insertion Ring Wireless

	Protocol for Extending LLDP�
	Extending LLDP Agenda:
	New Definitions: Hold Discussion Until End Of Presentation
	Slide Number 4
	Discovery Protocols
	Objectives for New LLDPv2 Method
	Objectives for New LLDPv2 Method
	Slide Number 8
	Current LLDP Operation
	Proposal: Foundation PDU (F-PDU)
	Proposal: Extension PDUs (X-PDUs)
	Proposal: Extension Request PDU (XREQ-PDU)
	Manifest TLV: Added to the Foundation LLDPv1 PDU
	Format for LLDP Extension PDUs (X-PDU)
	Extension PDU Identifier TLV (XID TLV):
	Request For Extension PDUs (XREQ-PDU)
	Extension Request PDUs TLV (XREQ TLV)
	Slide Number 18
	LLDP Extension Operation Proposal: Receiver Pacing
	Example Duplicate MACs on CSMA/CD Ethernet
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Summary
	Slide Number 25
	Thank You
	Backup Slides
	Datacenter Network Using LSVR
	Typical Server and Switch Rack Configuration
	Slide Number 30
	Slide Number 31
	Shared Media Types

