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Extending LLDP Agenda:

–Introduce New Definitions
–Motivations and Objectives
–Link Layer Discovery Extension Protocol Principles
–Shared CSMA/CD Ethernet Worst Case Operation 
–Summary and New Definition Discussion



3

New Definitions: Hold Discussion Until End Of Presentation

–Link Layer Discovery Foundation PDU (LLDFPDU,F-PDU): This is the single 
LLDPv1 PDU. In context this can be shortened to “foundation PDU” or F-PDU.

–Link Layer Discovery Extension PDU (LLDXPDU,X-PDU): This is an extension PDU 
for the LLDP database. In context this can be shortened to “extension PDU” or X-PDU.

–Link Layer Discovery Extension Request PDU (LLDXREQPDU,XREQ-PDU): This 
PDU is a request for transmission of one or more X-PDUs. In context this can be 
shortened to “request PDU” or XREQ-PDU.

–Link Layer Discovery Extension Protocol (LLDXP): This is the protocol used to 
exchange the extension PDUs of a multi-frame database.

–Manifest TLV: This is an LLDP TLV which describes each X-PDU of an Extended 
LLDP Database.

–Extension PDU Identifier TLV (XID TLV): This is an LLDP TLV carried in an X-PDU 
used to help identify the PDU.

–Extension Request TLV (XREQ TLV): This is an LLDP TLV carried in a RFXPDU and 
used to identify the requested X-PDUs.
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Extending LLDP Agenda:

–Introduce New Definitions
–Motivations and Objectives
–Link Layer Discovery Extension Protocol Principles
–Shared CSMA/CD Ethernet Worst Case Operation 
–Summary and New Definition Discussion
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Discovery Protocols 
– New IETF work on Link State Vector Routing (lsvr) has resulting in development of a discovery protocol called 

Layer 3 Data Link (l3dl) also IETF bgp group has a contribution for neighbor discovery protocol
– The lsvr draft in progress is: https://tools.ietf.org/pdf/draft-ietf-lsvr-l3dl-02.pdf
– The idr contribution is: https://tools.ietf.org/pdf/draft-xu-idr-neighbor-autodiscovery-11.pdf

– Work recently completed at IEEE on extensions to Virtual Station Interface Discovery and Configuration Protocol 
(VDP, 802.1Q-2018 clauses 40, 41, and 43) extends VDP to cover IP addressing for split NVE of NVO3 
(802.1Qcy-2019)

– Work in progress at IEEE on Auto Attach (P802.1Qcj) which is currently described for Provider Backbone 
Bridges
– Open source for LLDP auto attach is at:  https://github.com/auto-attach/aa-lldpd
– Provides discovery of VID to I-SID mapping for BEBs attaching to servers

– New IEEE project on LLDPv2 (802.1ABdh) 
– Purpose is to extend LLDP to scale existing LLDP applications, and add enhancements for router and TSN applications
– The LLDPv2 project will be an amendment of 802.1AB-2016 (P802.1ABdh)
– The LLDPv2 project will allow LLDPv2 databases consisting of multiple frames
– LLDPv2 and LLDPv1 nodes will interoperate as though they were LLDPv1 with a single frame database
– LLDPv2 should be sufficient to fill most discovery needs without the additional protocols

https://tools.ietf.org/pdf/draft-ietf-lsvr-l3dl-02.pdf
https://tools.ietf.org/pdf/draft-xu-idr-neighbor-autodiscovery-11.pdf
https://github.com/auto-attach/aa-lldpd
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Objectives for New LLDPv2 Method

– Support LLDP databases larger than a single frame
– Optimize LLDPv2 for databases around 100K bytes
– For reference IETF currently believes database sizes around 64K bytes are sufficient

– Support the ability to limit the LLDP frame size to meet timing constraints imposed by some TSN 
applications
– Do we need to split TLVs over multiple PDUs?
– How big do these databases need to be?

– Support the ability to communicate with an LLDPv1 implementation
– Only the LLDPv1 database would be exchanged between and LLDPv1 and LLDPv2 implementation

– Support shared media, optimize for point-to-point though allows shared
– Duplicate MAC addressing should be handled by the extension protocol

– Ensure the integrity of the full set of TLVs received by partners
– Do we also need to provide a means to authenticate the LLDP database? The IETF has this requirement.
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Objectives for New LLDPv2 Method

– Support pacing of PDUs to receivers to prevent overloading low level network firmware
– Historically OSPF and IS-IS have had problems from lack of flow and congestion management

– Reduce network traffic by reducing periodic transmission to the minimum
– Only update the foundation LLDPv1 PDU periodically
– Extension PDUs are only transmitted/updated on demand from receivers
– Update extension PDUs only when they have changed

– Other optimizations and considerations which might be useful
– Computational load requirements for LLDPv2 receivers to update and validate PDUs
– Larger TLVs or is using multiple TLVs appears sufficient
– TLVs spanning multiple extension database PDUs, is this required for TSN
– Database authentication, is high want for IETF and other applications

– Part of separate authentication extension
– Key exchange requirements
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Extending LLDP Agenda:

–Introduce New Definitions
–Motivations and Objectives
–Link Layer Discovery Extension Protocol Principles
–Shared CSMA/CD Ethernet Worst Case Operation 
–Summary and New Definition Discussion
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Current LLDP Operation

NOTE: Remote and Local MIBs are databases that must fit within a single PDU length PDU
Replace all values of the Remote MIB with contents of LLDPDU when something changes
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Proposal: Foundation PDU (F-PDU)

– The current LLDPv1 PDU with a Manifest TLV is the foundation PDU (F-PDU)

– The foundation PDU is exchanged using the existing LLDPv1 protocol without modifications 

– All databases are created as LLDPv1 databases, no extension PDUs create new databases

– An extended LLDP database is composed of the foundation PDU and n-1 extension PDUs

– A manifest TLV placed in the LLDPv1 foundation PDU identifies all extension PDUs

– If no manifest TLV is present in the foundation PDU then no extension PDUs exist for the LLDP database

– The upper limit to the number of PDUs is determined by the LLDPv1 TLV size limit (512) and the format of 
the manifest TLV
– Note: When we have a small max PDU size the manifest TLV size can be further limited resulting in 

limiting the database size

– The manifest TLV carries an identifier for each extension PDU

– Any change in an extension PDU is reflected as a change in the manifest TLV, therefore

– Any change in an extension PDU will result in a change to the foundation PDU
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Proposal: Extension PDUs (X-PDUs)

– The extension LLDPDU will be ignored by LLDPv1
– An alternate Ethertype is used for LLDPv2 PDUs to guarantee PDUs are never directed to LLDPv1

– Each extension PDU has three mandatory TLVs in the beginning of the PDU:
– Each extension PDU contains the first two mandatory TLVs of a LLDPDUv1 (ChassisID + PortID)
– Each extension PDU contains a new extension TLV that identifies the PDU
– Before an extension PDU is added to a database it’s {ChassisID, PortID, ExtensionID} must match the 

manifest TLV

– Each extension PDU is transmitted as a unicast in response to a receiver request
– Extension PDUs are only transmitted in response to requests
– The DA of an Extension PDU is the SA of the request

– The TTL in foundation PDU relates to all extension PDUs
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Proposal: Extension Request PDU (XREQ-PDU)

– The extension Request PDU will be ignored by LLDPv1
– An alternate Ethertype is used for LLDPv2 PDUs to guarantee PDUs are never directed to LLDPv1

– Each extension request PDU has three mandatory TLVs in the beginning of the PDU:
– Each contains the first two mandatory TLVs of a LLDPDU (ChassisID + PortID)

– However the ChassisID and PortID are for the destination rather than the source
– Each contains a new extension request TLV that identifies the PDUs a list of extension PDU to be transmitted

– An extension request (XREQ-PDU) is sent between peers to request transmission of an extension PDU
– The LLDP extension protocol supports multiple peers on a shared media
– Transmission of X-PDUs is only in response to an XREQ-PDU generated by the receiving system
– A receivers requests X-PDU transmission when it determines the current X-PDU does not match the manifest TLV
– Receivers can have only a single XREQ-PDU pending at a time
– A single XREQ-PDU can request transmission of multiple X-PDUs
– The receiver controls the transmission rate by controlling the number of X-PDUs requested and the timing between XREQ-PDUs
– Receivers time out the requested X-PDU responses
– Transmitters periodically send the foundation F-PDU which can update the manifest TLV in turn resulting XREQs for X-PDUs

– Each extension request PDU is transmitted as a unicast
– The DA of an extension request PDU is the SA of the foundation PDU
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Manifest TLV: Added to the Foundation LLDPv1 PDU

– Number of extension PDUs indicates the number of valid PDU descriptors in the manifest
– Some implementations may fix the manifest TLV size however load it with a variable number of PDUs
– If we don’t need to hold the manifest TLV size constant, then the TLV length is sufficient to determine the 

number of manifest entries

– Each Extension PDU is identified by a:
– Extension LLDPDU number, this number is included in the manifest to facilitate PDU deletion and insertion
– Extension LLDPDU revision, updated modulo 256 on every change to the extension LLDPDU
– Extension LLDPDU check: for example 32 bits of MD5
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(9 bits)

Extension PDU
Check

(32 bits)

Extension PDU Descriptor
repeat n times (0 <= n <= 84) 
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3

R
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LLDPDU
Number
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R
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Format for LLDP Extension PDUs (X-PDU)

– LLDPv2 Ethertype
– New LLDPv2 Ethertype for Extension PDUs prevents conflict with LLDPv1
– Extension PDUs are identified by the presence of the Extension Desc TLV
– Since extensions are not multicast and only delivered on request no new Ethertype is required, though one could be used if desired

– Chassis ID + Port ID are mandatory
– The Chassid ID and Port ID of the PDU source
– Note TTL from 1st PDU should apply and is not needed here

– Extension Identifier TLV is mandatory and must be the third TLV
– Identifies this Extension PDU, the PDU revision

DA SA
LLDP
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Ethertype

Extension
Identifier

TLV
Optional

TLV
End of 

LLDPDU
TLV

PortID
TLV

(source)

ChassisID
TLV

(source)
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TLV

Ethernet Header
M M M

LLDP Extension PDU
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Extension PDU Identifier TLV (XID TLV):

– Extension PDU Number is the designation number for this PDU 
– The PDU number is in the range from 1 – 84
– Matched to the manifest extension PDU number

– Extension PDU revision number
– Incremented modulo 256 whenever the extension LLDPDU is changed
– Matched to the manifest to guarantee the extension LLDPDU is the one represented in the manifest

– Note the extension PDU check code is not carried in the Extension TLV and so must be calculated to 
match the manifest check code 

TLV type 
= DESC
(7 bits)

TLV information
String length

(9 bits)

1 2 4
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PDU
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(7 bits)
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Request For Extension PDUs (XREQ-PDU)

– LLDP Extension Ethertype
– New LLDP Ethertype for Extension PDUs to prevent conflict with LLDPv1 implementations

– ChasssisID and PortID TLVs are mandatory in a Request for Extension PDU
– ChassisID is the first and PortID is the second TLV in the PDU
– Unlike a standard LLDPDU the ChassisID and PortID identify the destination not the source

– Extension Request TLV is mandatory in a Request for Extension PDU
– The Extension Request TLV is the third TLV in the PDU
– Request PDUs are identified by the presence of the Request for Extension TLV
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Ethertype

XREQ TLV
End of 
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TLV
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TLV
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M M
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M
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Extension Request PDUs TLV (XREQ TLV)

– Extension Request PDUs
– A given chassis/port may only have a single XREQ TLV pending at a time
– Multiple XREQs PDUs may be used to pace the PDUs at the receiver by withholding XREQs
– A single XREQ PDU may request multiple Extension PDUs if the receiver has sufficient buffer for them
– The bit map is used to identify the list of Extension LLDPDUs by number 

– The index to the bit map identifies the Extension LLDPDU number

– Extension LLDPDUs are not multicast, instead they are unicast 
– The extension LLDPDUs are sent to the SA address within the foundation LLDPDU
– On a shared media each individual LLDP Agent must provide independent requests for extension frames
– This allows the individual receivers to pace PDUs at rates that match their ability to handle the reception

TLV type 
= DESC
(7 bits)

TLV information
String length

(9 bits)

Request PDUs
bitmap

(84 bits)
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R
es Bits
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Extending LLDP Agenda:

–Introduce New Definitions
–Motivations and Objectives
–Link Layer Discovery Extension Protocol Principles
–Shared CSMA/CD Ethernet Worst Case Operation 
–Summary and New Definition Discussion
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LLDP Extension Operation Proposal: Receiver Pacing

NOTE: Send LLDPDU as specified by LLDPv1 when something changes and periodically
Only send extension LLDPDU when explicitly requested by a XREQ
Only issue XREQ when manifest shows the local copy is out of date
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rxProcessManifest()

Extension Request PDU

Extension PDU

Extension Request PDU

Extension PDU

rxProcessXREQ() rxExtTTR

rxExtTTR

SomethingChangedLocal()

rxProcessExtPDU()
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Example Duplicate MACs on CSMA/CD Ethernet

– In this example we have duplicate unicast port MACs both on the same switch and other switches
– This example was chosen as a worst case example

– CSMA/CD delivered all frames to all ports connected to the LAN regardless of the destination address
– We have other types of shared media, for instance and WiFI, token rings, EPON which may behave somewhat differently
– On a CSMA/CD Ethernet end stations filter the delivered frames so they only receive unicast and multicasts programmed in the MAC

– Bridge ports operate as end stations directing frames to the bridge brain rather than the relay
– IEEE specifies an internal MAC for each Bridge Port which is used as the source of control frames such as LLDP
– Some Bridge implementations share a single unicast MAC between all ports

– On a shared media where it is possible to have duplicate MAC addresses we could receive a unicast transmission in multiple 
places

1 2

PortIDTTL

LLDP Agent Port 1 

Remotes Local

PortIDTTL

LLDP Agent Port 2 

Remotes Local

1 2

PortIDTTL

LLDP Agent Port 1 

Remotes Local

PortIDTTL

LLDP Agent Port 2 

Remotes Local

1 2

PortIDTTL

LLDP Agent Port 1 

Remotes Local

PortIDTTL

LLDP Agent Port 2 
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Switch A Switch B Switch C

MAC A MAC A MAC B MAC B MAC A MAC B
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Shared Media, Extension Request PDU, Duplicate Switch MACs
– Here we have an Extension Request (XREQ) 

PDU addressed to bridge port with MAC A 
sourced from bridge B with source MAC B

– The bridge port MAC A is duplicated on ports 1 
and 2 of the bridge
– The bridge receives two copies of the XREQ
– These two copies are directed to the bridge brain for 

processing

– The bridge brain uses the Destination ChassisID
and PortID to determine what database the PDU 
is intended for

– The bridge brain uses the request number to 
filter out duplicates

– A single response is generated from the correct 
port

– If the XREQ was also delivered to some other 
bridge the destination chassisID would be used 
by the brain to filter it. 
– In the example switch C has a duplicate MAC A port.

1 2

PortID
TTL

Port 1 

Remotes Local

PortID
TTL

Port 2 

Remotes Local

Switch A (MAC A)

Dest ChassisID = A Dest PortID = 1 Request# = 27

DA=A SA=B Type=LLDPv2

MAC A MAC A
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Shared Media, Extension Response, Duplicate Switch MACs

– Here we have a Extension Response PDU addressed to bridge 
port with MAC B from bridge A

– The bridge port MAC B is shared by ports 1 and 2 of the bridge
– The bridge receives two copies of the Response
– These two copies are directed to the bridge brain for processing

– The bridge brain uses the source ChassisID and PortID to 
determine what databases the PDU is intended for
– If no database matches the ChassisID+PortID the PDU is 

discarded

– The bridge brain checks to see if the PDU matches the manifest 
by comparing the PDU Number, the PDU Revision, and 
computing the checksum
– If the PDU does not match the manifest it is discarded

– If the PDU matches the manifest and also matches the current 
extension PDU then it is discarded
– Note: this discards any duplicate PDUs

– If the PDU matches the manifest, however does not match the 
current extension PDU, then the database is updated with the 
new PDU
– Note: a single response PDU may update multiple port databases

– If another switch (i.e. switch C) also used a duplicate port MAC B 
and if switch C also stored the same ChassisID+PortID database 
with the same manifest TLV, then it also can update it’s database 
as above.

1 2

PortID
TTL

Port 1 

Remotes Local

PortID
TTL

Port 2 

Remotes Local

Switch B (MAC B)

ChassisID = A PortID = 1 Extension TLV

DA=B SA=A Type=LLDPv2
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Extending LLDP Agenda:
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Summary

–A Manifest TLV in the foundation LLDPv1 PDU is used to specify the extensions
– The Manifest TLV identifies the PDU number, revision, and a check code
– Using an 7 bit PDU number, 8 bit PDU revision, and 32 bit check code allows up to 84 PDUs in 

the manifest

–A unicast protocol can operate in the face of duplicate MACs on shared media
– The unicast protocol allows receiver pacing for PDU reception
– The receiver may also control re-transmission for reliable delivery of extension PDUs

–Extension PDU updates are only required when the current revision is out of date
– The foundation PDU which includes the Manifest TLV is updated periodically and whenever 

something changes
– If any extension PDU changes then a change will occur in the Manifest TLV in the foundation 

PDU
– LLDP determines if an extension PDU needs to be updated by comparing the manifest with the 

current database
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New Definitions: Discussion

–Link Layer Discovery Foundation PDU (LLDFPDU,F-PDU): This is the single 
LLDPv1 PDU. In context this can be shortened to “foundation PDU” or F-PDU.

–Link Layer Discovery Extension PDU (LLDXPDU,X-PDU): This is an extension 
PDU for the LLDP database. In context this can be shortened to “extension PDU” or 
X-PDU.

–Link Layer Discovery Extension Request PDU (LLDXREQPDU,XREQ-PDU): This 
PDU is a request for transmission of one or more X-PDUs. In context this can be 
shortened to “request PDU” or XREQ-PDU.

–Link Layer Discovery Extension Protocol (LLDXP): This is the protocol used to 
exchange the extension PDUs of a multi-frame database.

–Manifest TLV: This is an LLDP TLV which describes each X-PDU of an Extended 
LLDP Database.

–Extension PDU Identifier TLV (XID TLV): This is an LLDP TLV carried in an X-PDU 
used to help identify the PDU.

–Extension Request TLV (XREQ TLV): This is an LLDP TLV carried in a RFXPDU 
and used to identify the requested X-PDUs.
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Datacenter Network Using LSVR
– Most datacenters are configured as 

2-3 layer Clos networks using 
ECMP for distribution over the mesh 
and LAGs/M-LAGs for server 
attachment  

– Typically these networks provide an 
IPv4/IPv6 topology organized with 
ToR and Spine switches within Pods 
(around 8-128 racks)

– Servers at the network edge 
manage virtual and tenant networks 
which are encapsulated into the IP 
packets for transmission over the 
data center

– The orchestrator controls the 
creation of the virtual and tenant 
networks along with coupling to 
services
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Spine Switch
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Typical Server and Switch Rack Configuration

– Here the Bridge portion of the Top 
Of Rack Switch couples physical 
ports to each server in the rack

– Over the Bridge Ports VLANs are 
distributed to each server

– For each VLAN within the rack an 
IP subnet is assigned

– Each router port in the Top Of Rack 
is coupled to a single VLAN which 
is mapped onto an IP subnet

– Protocols within the switch (in this 
case LSVR) advertise the subnets 
available within the rack to the rest 
of the network
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Server Network Interfaces – Virtual Machines (i.e. VMWare)

– Virtual Station Interface (VSI, defined in IEEE Std 802.1Q-2018): is an internal LAN which connects between a virtual 
NIC and a virtual Bridge Port

– Virtual Access Point (VAP): A logical connection point on the Network Virtualization Edge (NVE) for connecting a 
Tenant System to a virtual network

– DC network is a simple IP underlay network. For scaling L3 encapsulations are supported using “NVE like” 
procedures within the server controlled by Data Center Orchestration
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Server Network Interfaces – Containers (i.e. Docker)

– Container Solutions use Linux Namespaces and Groups to isolate containers
– These solutions provide a variety of network connections, though use an overlay for large scale datacenters 
– DC network is a simple IP network. For scaling L3 encapsulations are supported using “NVE like” procedures within the server 

controlled by Data Center Orchestration
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Shared Media Types

CSMA/CD Token/Insertion Ring Wireless
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