Conformance Class
IEC/IEEE 60802

Contributor group

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
<th>Column</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ademaj, Astrit</td>
<td>astrit.ademaj@tttech.com</td>
<td>TT</td>
</tr>
<tr>
<td>Dorr, Josef</td>
<td>josef.dorr@siemens.com</td>
<td>SI</td>
</tr>
<tr>
<td>Enzinger, Thomas</td>
<td>thomas.enzinger@br-automation.com</td>
<td>BR</td>
</tr>
<tr>
<td>Hantel, Mark</td>
<td>mrhantel@ra.rockwell.com</td>
<td>RA</td>
</tr>
<tr>
<td>Hotta, Yoshifumi</td>
<td>Hotta.Yoshifumi@eb.MitsubishiElectric.co.jp</td>
<td>MI</td>
</tr>
<tr>
<td>Kehrer, Stephan</td>
<td>Stephan.Kehrer@belden.com</td>
<td>—</td>
</tr>
<tr>
<td>Sato, Atsushi (Alex)</td>
<td>a.satou@jp.yokogawa.com</td>
<td>YO</td>
</tr>
<tr>
<td>Seewald, Maik</td>
<td>maseewal@cisco.com</td>
<td>—</td>
</tr>
<tr>
<td>Stanica, Marius-Petru</td>
<td>marius-petru.stanica@de.abb.com</td>
<td>AB</td>
</tr>
<tr>
<td>Steindl, Guenter</td>
<td>guenter.steindl@siemens.com</td>
<td>SI</td>
</tr>
<tr>
<td>Leurs, Ludwig</td>
<td>Ludwig.Leurs@bosch-rexroth.com</td>
<td>BO</td>
</tr>
</tbody>
</table>

Abstract
This document describes an example Conformance Class based on “60802-Steindl-ExampleSelections-0119-v02.pdf” as a starting point for feature alignment. The parameters and values given in this document are presenting the ongoing discussions. Currently there is no agreement which attributes, parameters and values are mandatory within the profile.

Parameters are moved to “60802-Steindl-et-al-ExampleSelectionTables-1119-v17.pdf”.

Log

V0.1 Initial version
V0.5 Update with Example Selections “Y” and “Z”
V0.6 Update after discussion in IEC/IEEE 60802
V0.7 Update after discussion in IEC/IEEE 60802
V1.0 Initial public version for IEC/IEEE 60802
V1.2 Version created during Edinburgh meeting
V1.3 Version created in preparation for Hawaii meeting
V1.4 Version created during Hawaii meeting
V1.5 Version created after Hawaii meeting
V1.6 Update after discussion in IEC/IEEE 60802
V1.7 Tables moved to Excel for easier handling
V1.8 Questionnaire updated
V2.2 Feedback integrated (YO, SI)
Content

18 Contributor group ... 1
19 Abstract ... 1
20 Log .. 2
21 Content ... 3
22 Figures... 6
23 Tables... 7
24 1 References .. 8
25 2 Terms and Definitions .. 9
26 2.1 Definitions .. 9
27 2.2 IEEE802 terms .. 9
28 3 Devices classes ... 9
29 3.1 General ... 9
30 3.2 Question ... 10
31 3.3 Drawings.. 11
32 3.4 Feedback from contributors .. 12
33 3.4.1 Siemens .. 12
34 3.4.1.1 What is your understanding of constraint bridge or end-station?....................................... 12
35 3.4.1.2 Shall a vendor independent mix between “full-blown” and “constraint” devices in one TSN Domain be supported? .. 12
36 3.4.1.3 Shall a vendor independent mix between “full-blown” devices in one TSN Domain be supported? .. 12
37 3.4.1.4 Shall a vendor independent mix between “constraint” devices in one TSN Domain be supported? .. 12
38 3.4.1.5 Shall a mix between vendor independent “full-blown” and vendor dependent “constraint” devices in one TSN Domain be supported? .. 13
39 3.4.1.6 Is it enough to support a vendor dependent mix of “constraint” devices in one TSN Domain? .. 13
40 3.4.1.7 Does the usage of end-stations follow the same model? .. 13
41 3.4.2 Rockwell .. 13
42 3.4.2.1 What is your understanding of constraint bridge or end-station?....................................... 13
43 3.4.2.2 Shall a vendor independent mix between “full-blown” and “constraint” devices in one TSN Domain be supported? .. 13
44 3.4.2.3 Shall a vendor independent mix between “full-blown” devices in one TSN Domain be supported? .. 13
45 3.4.2.4 Shall a vendor independent mix between “constraint” devices in one TSN Domain be supported? .. 13
46 3.4.2.5 Shall a mix between vendor independent “full-blown” and vendor dependent “constraint” devices in one TSN Domain be supported? .. 14
47 3.4.2.6 Is it enough to support a vendor dependent mix of “constraint” devices in one TSN Domain? .. 14
48 3.4.2.7 Does the usage of end-stations follow the same model? .. 14
49 3.4.3 Mitsubishi ... 14
50 3.4.3.1 What is your understanding of constraint bridge or end-station?....................................... 14
51 3.4.3.2 Shall a vendor independent mix between “full-blown” and “constraint” devices in one TSN Domain be supported? .. 14
52 3.4.3.3 Shall a vendor independent mix between “full-blown” devices in one TSN Domain be supported? .. 14
53 3.4.3.4 Shall a vendor independent mix between “constraint” devices in one TSN Domain be supported? .. 14
54 3.4.3.5 Shall a mix between vendor independent “full-blown” and vendor dependent “constraint” devices in one TSN Domain be supported? .. 14
<table>
<thead>
<tr>
<th>Page</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td>3.4.3.6 Is it enough to support a vendor dependent mix of “constraint” devices in one TSN Domain?</td>
</tr>
<tr>
<td>70</td>
<td>3.4.3.7 Does the usage of end-stations follow the same model?</td>
</tr>
<tr>
<td>71</td>
<td>3.4.3.8 Yokogawa</td>
</tr>
<tr>
<td>72</td>
<td>3.4.4 What is your understanding of constraint bridge or end-station?</td>
</tr>
<tr>
<td>73</td>
<td>3.4.4.1 Shall a vendor independent mix between “full-blown” and “constraint” devices in one TSN Domain be supported?</td>
</tr>
<tr>
<td>74</td>
<td>3.4.4.2 Shall a vendor independent mix between “full-blown” devices in one TSN Domain be supported?</td>
</tr>
<tr>
<td>75</td>
<td>3.4.4.3 Shall a vendor independent mix between “full-blown” devices in one TSN Domain be supported?</td>
</tr>
<tr>
<td>76</td>
<td>3.4.4.4 Shall a vendor independent mix between “constraint” devices in one TSN Domain be supported?</td>
</tr>
<tr>
<td>77</td>
<td>3.4.4.5 Shall a mix between vendor independent “full-blown” and vendor dependent “constraint” devices in one TSN Domain be supported?</td>
</tr>
<tr>
<td>78</td>
<td>3.4.4.6 Is it enough to support a vendor dependent mix of “constraint” devices in one TSN Domain?</td>
</tr>
<tr>
<td>79</td>
<td>3.4.4.7 Does the usage of end-stations follow the same model?</td>
</tr>
<tr>
<td>80</td>
<td>3.4.5 ABB</td>
</tr>
<tr>
<td>81</td>
<td>3.4.5.1 What is your understanding of constraint bridge or end-station?</td>
</tr>
<tr>
<td>82</td>
<td>3.4.5.2 Shall a vendor independent mix between “full-blown” and “constraint” devices in one TSN Domain be supported?</td>
</tr>
<tr>
<td>83</td>
<td>3.4.5.3 Shall a vendor independent mix between “full-blown” devices in one TSN Domain be supported?</td>
</tr>
<tr>
<td>84</td>
<td>3.4.5.4 Shall a vendor independent mix between “constraint” devices in one TSN Domain be supported?</td>
</tr>
<tr>
<td>85</td>
<td>3.4.5.5 Shall a mix between vendor independent “full-blown” and vendor dependent “constraint” devices in one TSN Domain be supported?</td>
</tr>
<tr>
<td>86</td>
<td>3.4.5.6 Is it enough to support a vendor dependent mix of “constraint” devices in one TSN Domain?</td>
</tr>
<tr>
<td>87</td>
<td>3.4.5.7 Does the usage of end-stations follow the same model?</td>
</tr>
<tr>
<td>88</td>
<td>3.4.6 Others</td>
</tr>
</tbody>
</table>

4 TSN in Industrial Automation | 21
4.1 General | 21
4.2 Conformance Class | 21
4.2.1 Standard selection | 21
4.2.1.1 General | 21
4.2.1.2 Terms | 21
4.3 Full-blown devices | 22
4.3.1 Common | 22
4.3.1.1 IEEE 802.3 | 22
4.3.2 Bridge | 22
4.3.2.1 IEEE 802.1Q | 22
4.3.2.2 IEEE 802.1AB | 22
4.3.2.3 IEEE 802.1AS | 22
4.3.2.4 IEEE 802.1CB | 22
4.3.2.5 IEC standards | 22
4.3.3 End-station | 22
4.3.3.1 General | 22
4.4 Constraint devices | 22
4.4.1 Common | 22
4.4.1.1 IEEE 802.3 | 22
4.4.2 Bridge | 22
4.4.2.1 IEEE 802.1Q | 22
4.4.2.2 IEEE 802.1AB .. 22
4.4.2.3 IEEE 802.1AS .. 22
4.4.2.4 IEEE 802.1CB .. 23
4.4.2.5 IEC standards ... 23
4.4.3 End-station ... 23
4.4.3.1 General ... 23
Literature and related Contributions 23

121
122
123
124
125
126
127
128
129
130
131
Figures

133 Figure 1 – Principle structure of an Automation System...11
134 Figure 2 – Example for possible intended usage..12
135 Figure 3 -- Yokogawa example system architecture...15
136 Figure 4 -- Yokogawa example CC mapping..16
137 Figure 5 -- Yokogawa example CC mapping..16
138 Figure 6 -- Yokogawa example CC mapping..17
1 References

149 60802-industrial-use-cases-0918-v13.pdf
150 60802-Steindl-ExampleSelections-0119-v02.pdf
151 60802-Steindl-QuantityFigures-0519-v01.pdf
152 60802-Steindl-TimelinessUseCases-0718-v01.pdf
153 60802-Steindl-et-al-ExampleSelectionTables-1119-v17.pdf
154
2.1 Definitions

Conformance Class

A selection of IEC and IEEE features and quantities which allows to solve the required use cases.

2.2 IEEE802 terms

- Priority regeneration: See IEEE 802.1Q-2018 clause 6.9.4 Regenerating priority
- Ingress rate limiting: See IEEE 802.1Q-2018 clause 8.6.5 Flow classification and metering

3 Devices classes

3.1 General

This document addresses two device classes:
The term “Full-blown” is used to classify a device class which supports all needed features. This class is almost not constraint by compute power, power consumption, required memory size, ….

The term “Constraint” is used to classify a device class which has limitations in the area of compute power, power consumption, required memory size, ….

The understanding of the limitations of “constraint” devices (better: What are the expectations?) needs to be aligned between the different contributors. The following chapters show the understanding of the contributors.

3.2 Question
Following questions are of interest for the discussion:

1. What is your understanding of constraint bridge or end-station?

 Editor’s note: Why do you intend to develop two classes of devices?

2. Shall a vendor independent mix between “full-blown” and “constraint” devices in one TSN Domain be supported?

 Editor’s note: This means, that a vendor independent configuration of the network portion of each device according to IEC/IEEE 60802 is supported.

3. Shall a vendor independent mix between “full-blown” devices in one TSN Domain be supported?

 Editor’s note: Follow-up to Question 2 – or is this only required for class full-blown?

4. Shall a vendor independent mix between “constraint” devices in one TSN Domain be supported?

 Editor’s note: Let’s assume that in a TSN Domain only class constraints is supported. This means, that a vendor independent configuration of the network portion of each device according to IEC/IEEE 60802 is supported.
5. Shall a mix between vendor independent “full-blown” and vendor dependent “constraint” devices in one TSN Domain be supported?

Editor’s note: *This means, that a mixture between vendor dependent configuration and vendor independent according to IEC/IEEE 60802 definitions of the network portion - is supported.*

6. Does for the end-stations the same usage model apply?

Editor’s note: *Same principle – Question 1 to 5 – for end-stations. Assumption: Pure end-stations, without integrated bridge, do have lesser impact to the overall interoperability. Thus, it’s unclear to the editor whether we need two classes for them.*

3.3 Drawings

Figure 1 shows the principle structure of an Automation System.

![Figure 1 – Principle structure of an Automation System](image)

Figure 2 shows one example for a possible usage of full-blown and constraint devices.
3.4 Feedback from contributors

3.4.1 Siemens

Ethernet is the basis of the industrial communication. TSN is now part of Ethernet and thus, basis of the industrial communication, too.

Devices are intended to be used at all layers of the automation pyramid. Thus, the basic Ethernet requirements are identical for all devices.

Constraints are only acceptable if they do not interfere with the convergence. Do not disturb the others!

3.4.1.1 What is your understanding of constraint bridge or end-station?

The understanding of the term “Constraint” needs to be aligned among each contributor.

Constraints are only acceptable if they do not interfere with the convergence.

3.4.1.2 Shall a vendor independent mix between “full-blown” and “constraint” devices in one TSN Domain be supported?

(This means, that a vendor independent configuration of the network portion of each device according to IEC/IEEE 60802 is supported.)

Yes

3.4.1.3 Shall a vendor independent mix between “full-blown” devices in one TSN Domain be supported?

(Follow-up to Question 2 – or is this only required for class full-blown?)

Figure 2 – Example for possible intended usage
3.4.1.4 Shall a vendor independent mix between “constraint” devices in one TSN Domain be supported?

(Let’s assume that in a TSN Domain only class constraints is supported. This means, that a vendor independent configuration of the network portion of each device according to IEC/IEEE 60802 is supported.)

3.4.1.5 Shall a mix between vendor independent “full-blown” and vendor dependent “constraint” devices in one TSN Domain be supported?

(This means, that a mixture between vendor dependent configuration and vendor independent according to IEC/IEEE 60802 definitions of the network portion - is supported.)

3.4.1.6 Is it enough to support a vendor dependent mix of “constraint” devices in one TSN Domain?

No

3.4.1.7 Does the usage of end-stations follow the same model?

(Same principle – Question 1 to 5 – for end-stations. Assumption: Pure end-stations, without integrated bridge, do have lesser impact to the overall interoperability. Thus, it’s unclear to the editor whether we need two classes for them.)

3.4.2 Rockwell

TBD

3.4.2.1 What is your understanding of constraint bridge or end-station?

The understanding of the term “Constraint” needs to be aligned among each contributor.

3.4.2.2 Shall a vendor independent mix between “full-blown” and “constraint” devices in one TSN Domain be supported?

(This means, that a vendor independent configuration of the network portion of each device according to IEC/IEEE 60802 is supported.)

TBD

3.4.2.3 Shall a vendor independent mix between “full-blown” devices in one TSN Domain be supported?

(Follow-up to Question 2 – or is this only required for class full-blown?)

TBD

3.4.2.4 Shall a vendor independent mix between “constraint” devices in one TSN Domain be supported?

(Let’s assume that in a TSN Domain only class constraints is supported. This means, that a vendor independent configuration of the network portion of each device according to IEC/IEEE 60802 is supported.)

TBD
3.4.2.5 Shall a mix between vendor independent “full-blown” and vendor dependent “constraint” devices in one TSN Domain be supported?

This means, that a mixture between vendor dependent configuration and vendor independent according to IEC/IEEE 60802 definitions of the network portion - is supported.

No, but may be supported with some restrictions (limited performance, topology, etc.)

3.4.2.6 Is it enough to support a vendor dependent mix of “constraint” devices in one TSN Domain?

TBD

3.4.2.7 Does the usage of end-stations follow the same model?

Same principle – Question 1 to 5 – for end-stations. Assumption: Pure end-stations, without integrated bridge, do have lesser impact to the overall interoperability. Thus, it’s unclear to the editor whether we need two classes for them.

TBD

3.4.3 Mitsubishi

3.4.3.1 What is your understanding of constraint bridge or end-station?

A three-port-Bridge which has constrained CPU and memory resources. Constrained bridge is mainly used in machine. It supports TSN features which is needed to converge isochronous and/or cyclic and none delay bounded communication with ±1µs TER over 100hops.

Constrained Bridge can reduce the functionality from Full Bridge

- by pre-configuring parameters in centralized model
- by specifying use case, line topology with 2 ports devices.

- by using application-layer specific mechanisms

and can be connected with Backbone network via Full Bridge.

[Comment from the editor:

It is assumed that constraint devices ONLY support two external ports;

It is assumed that constraint devices NEVER used as TSN domain boundary:]

3.4.3.2 Shall a vendor independent mix between “full-blown” and “constraint” devices in one TSN Domain be supported?

No, but if they support common functions, they can be mixed.

3.4.3.3 Shall a vendor independent mix between “full-blown” devices in one TSN Domain be supported?

Yes.

3.4.3.4 Shall a vendor independent mix between “constraint” devices in one TSN Domain be supported?

No, but if they support common functions, they can be mixed.
3.4.3.5 Shall a mix between vendor independent “full-blown” and vendor dependent “constraint” devices in one TSN Domain be supported?
Yes, within the features of Constraint devices.

3.4.3.6 Is it enough to support a vendor dependent mix of “constraint” devices in one TSN Domain?
No. Full-blown devices can be mixed.

3.4.3.7 Does the usage of end-stations follow the same model?
Yes.

3.4.4 Yokogawa
This chapter provides the author’s answers with supporting information from Process Automation (PA) viewpoints, to the questions distributed to the contributors for further discussions.

Full-blown Bridge & End-station
Typically used for a backbone network, on which a bunch of IA-Devices communicate each other using variety of OT protocols with various data rates and traffic types.

Constraint Bridge & End-station
Typically used for an (in cabinet) IO network or a field network, on which a limited number of friendly neighbor IA-Devices communicate each other using an OT protocol with limited data rate options and traffic types.

Example PA System Architecture

![Yokogawa example system architecture](image)

Figure 3 -- Yokogawa example system architecture
CC Mapping Proposal (Plan A, 3 cc)

Add ccC for Constraint PA if ccB can meet Full-blown PA requirements.

ccA (Full-blown FA/Motion)
- Preemption
- Cut-through
- ...

ccB (Constraint FA/Motion, Full-blown PA)
- 8 queues
- 10M to 100Mbps
- Large FDB
- ...

ccC (Constraint PA)
- Min 4 queues
- 10/100Mbps
- Small FDB
- ...

Figure 4 -- Yokogawa example CC mapping

CC Mapping Proposal (Plan B, 2 cc)

Separate FA/Motion specific attributes and make them optional for PA in each class.

ccA
(Full-blown)
- FA/Motion specific attributes (Optional for PA)
- IA common attributes (Mandatory for all)

ccB
(Constraint)
- FA/Motion specific attributes (Optional for PA)
- IA common attributes (Mandatory for all)

Figure 5 -- Yokogawa example CC mapping
3.4.4.1 What is your understanding of constraint bridge or end-station?

The understanding of the term “Constraint” needs to be aligned among each contributor.

Typically used for an (in-cabinet) IO network or a field network, on which a limited number of friendly neighbor IA-Devices communicate each other using an OT protocol with limited data rate options and traffic types.

Typical constraint factors:

- Limited resources due to power consumption
- e.g. MPU power, memory size
- Single OT protocol with limited functionality
- Limited Traffic Types
- Limited power source

Hazardous area installation

- Explosion-proof (limited power consumption)
- Water-/Dust-/Salt-damage-/Corrosion-/… proof
- Special physical layer (e.g. APL, optical fiber) support
 - For noise protection
 - For long distance connection

In-cabinet installation

- Limited data rate for heat control
- Limited footprint

Switch-less installation requirement

- Limited topologies (line/ring)

Less strict performance requirements on:

- Time error
• Timestamp accuracy
• Minimum network cycle
• …

3.4.4.2 Shall a vendor independent mix between “full-blown” and “constraint” devices in one TSN Domain be supported?

This means, that a vendor independent configuration of the network portion of each device according to IEC/IEEE 60802 is supported.)

No, but may be supported with some restrictions (limited performance, topology, etc.)

3.4.4.3 Shall a vendor independent mix between “full-blown” devices in one TSN Domain be supported?

(Follow-up to Question 2 – or is this only required for class full-blown?)

Yes

3.4.4.4 Shall a vendor independent mix between “constraint” devices in one TSN Domain be supported?

(Let’s assume that in a TSN Domain only class constraints is supported. This means, that a vendor independent configuration of the network portion of each device according to IEC/IEEE 60802 is supported.)

Yes, but only a single OT protocol (based on the same configuration mechanism) would be supported in that TSN Domain.

3.4.4.5 Shall a mix between vendor independent “full-blown” and vendor dependent “constraint” devices in one TSN Domain be supported?

(This means, that a mixture between vendor dependent configuration and vendor independent according to IEC/IEEE 60802 definitions of the network portion - is supported.)

No, but may be supported with some restrictions (limited performance, topology, etc.)

3.4.4.6 Is it enough to support a vendor dependent mix of “constraint” devices in one TSN Domain?

TDB

3.4.4.7 Does the usage of end-stations follow the same model?

(Same principle – Question 1 to 5 – for end-stations. Assumption: Pure end-stations, without integrated bridge, do have lesser impact to the overall interoperability. Thus, it’s unclear to the editor whether we need two classes for them.)

Yes, available resources of pure end-stations could also be restricted according to the same constraint factors.

3.4.5 ABB

"Constraint" means an end station or a bridge which presents limitations, in terms of:

- Hardware
- Ports count (i.e. less than three external ports): exception for "constraint bridges", not applicable for "constraint end stations": I would propose to avoid considering this topic as relevant for the "constraint" bridges discussion, even if it intuitively belongs here. I believe this is related to the chosen topology, see again the example system.
- Ports data rate (i.e. power dissipation constraints, due to form factor size)
- Power supply (i.e. redundant or not)
• Timestamping capabilities
• Ingress and egress queue size
• …
• Software
• QoS functions (i.e. traffic shapers, cut-through capabilities, frame preemption, ingress policing, presence of more than one TSN configuration mechanism)
• Clock synchronization functions

Network Access capabilities
• Media redundancy functions
• …

We should be able to mix in a TSN domain, both constrained and fully capable end stations

Mixing constrained and fully capable bridges in a system is dependent on the topology and less on the TSN domains demarcation, see my example system

3.4.5.1 What is your understanding of constraint bridge or end-station?
The understanding of the term “Constraint” needs to be aligned among each contributor.

TBD

3.4.5.2 Shall a vendor independent mix between “full-blown” and “constraint” devices in one TSN Domain be supported?
(This means, that a vendor independent configuration of the network portion of each device according to IEC/IEEE 60802 is supported.)

TBD

3.4.5.3 Shall a vendor independent mix between “full-blown” devices in one TSN Domain be supported?
(Follow-up to Question 2 – or is this only required for class full-blown?)

TBD

3.4.5.4 Shall a vendor independent mix between “constraint” devices in one TSN Domain be supported?
(Let’s assume that in a TSN Domain only class constraints is supported. This means, that a vendor independent configuration of the network portion of each device according to IEC/IEEE 60802 is supported.)

TBD

3.4.5.5 Shall a mix between vendor independent “full-blown” and vendor dependent “constraint” devices in one TSN Domain be supported?
(This means, that a mixture between vendor dependent configuration and vendor independent according to IEC/IEEE 60802 definitions of the network portion - is supported.)

No, but may be supported with some restrictions (limited performance, topology, etc.)

3.4.5.6 Is it enough to support a vendor dependent mix of “constraint” devices in one TSN Domain?

TBD
3.4.5.7 Does the usage of end-stations follow the same model?

(Same principle – Question 1 to 5 – for end-stations. Assumption: Pure end-stations, without integrated bridge, do have lesser impact to the overall interoperability. Thus, it's unclear to the editor whether we need two classes for them.)

TBD

3.4.6 Others

TDB
4 TSN in Industrial Automation

4.1 General

Supporting a Conformance Classes shall allow interoperability for Bridges and End-Station as defined in the scope of IEC/IEEE 60802.

The document contains chapters for full-blown and constraint devices.

Editor’s note:
Please make all changes with “track changes on”

4.2 Conformance Class

4.2.1 Standard selection

4.2.1.1 General

A Conformance Class selects out of the following standards

IEEE802.3-2018 - IEEE Standard for Ethernet
IEEE802.1Q-2018 - Bridges and Bridged Networks
IEEE802.1AB-2016 - Station and Media Access Control Connectivity Discovery
IEEE802.1AS-2020 - Timing and Synchronization for Time-Sensitive Applications
IEEE802.1CB-2017 - Frame Replication and Elimination for Reliability

4.2.1.2 Terms

Supported:
This feature is used in any class of device

Support, but optional:
This feature is intended to be used in some class of device.
For silicon vendors, these topics may be “supported”, too.

Not used:
The used and thus the support of this feature is not intended.

Ω / TBD:
Not provided until agreed release date for this version.

—:
No quantities, because the assigned feature is not supported.

???:
The responsible editor is not able to fill this cell without a discussion with the other contributors.
4.3 Full-blown devices

4.3.1 Common

4.3.1.1 IEEE 802.3

See “60802-Steindl-et-al-ExampleSelectionTables-1119-v17.pdf”

2019-11-12:
Restricting the supported data rates in the profile seems not to be needed.

4.3.2 Bridge

4.3.2.1 IEEE 802.1Q

See “60802-Steindl-et-al-ExampleSelectionTables-1119-v17.pdf”

4.3.2.2 IEEE 802.1AB

See “60802-Steindl-et-al-ExampleSelectionTables-1119-v17.pdf”

4.3.2.3 IEEE 802.1AS

See “60802-Steindl-et-al-ExampleSelectionTables-1119-v17.pdf”

4.3.2.4 IEEE 802.1CB

See “60802-Steindl-et-al-ExampleSelectionTables-1119-v17.pdf”

4.3.2.5 IEC standards

See “60802-Steindl-et-al-ExampleSelectionTables-1119-v17.pdf”

4.3.3 End-station

4.3.3.1 General

See “60802-Steindl-et-al-ExampleSelectionTables-1119-v17.pdf”

4.4 Constraint devices

4.4.1 Common

4.4.1.1 IEEE 802.3

See “60802-Steindl-et-al-ExampleSelectionTables-1119-v17.pdf”

2019-11-12:
Restricting the supported data rates in the profile seems not to be needed.

4.4.2 Bridge

4.4.2.1 IEEE 802.1Q

See “60802-Steindl-et-al-ExampleSelectionTables-1119-v17.pdf”

4.4.2.2 IEEE 802.1AB

See “60802-Steindl-et-al-ExampleSelectionTables-1119-v17.pdf”

4.4.2.3 IEEE 802.1AS

See “60802-Steindl-et-al-ExampleSelectionTables-1119-v17.pdf”
4.4.2.4 IEEE 802.1CB

See “60802-Steindl-et-al-ExampleSelectionTables-1119-v17.pdf”

4.4.2.5 IEC standards

See “60802-Steindl-et-al-ExampleSelectionTables-1119-v17.pdf”

4.4.3 End-station

4.4.3.1 General

See “60802-Steindl-et-al-ExampleSelectionTables-1119-v17.pdf”

Literature and related Contributions

Literature:

Related contributions:

[10] Isochronous Drive Synchronization:

[12] Coexistence & Convergence in TSN-based Industrial Automation Networks:

[13] Flexible Manufacturing System (FMS) for Small Batch Customized Production:

[14] Multi-traffic transmission in industrial backbone network: