

Institute of Computer Science Chair of Communication Networks Prof. Dr. Tobias Hoßfeld

Bridge-Local Guaranteed Latency with Strict Priority Scheduling

Alexej Grigorjew – March 02, 2020

comnet.informatik.uni-wuerzburg.de

Desired Features:

- Computationally feasible
- Do not require global information (from •)
- ► Support brownfield installations ⇒ SP

Table of Contents

Preliminaries:

- Switch delay model
- Assumptions and constraints
 - Talker characteristics
 - Switch characteristics

```
Latency with Strict Priority Scheduling
                Alexej Grigorjew
                                                                 Florian Metzger
                                                                                                              Tobias Hoßfeld
        University of Würzburg, Germany
                                                       University of Würzburg, Germany
                                                                                                   University of Würzburg, Germany
        alexej.grigorjew@uni-wuerzburg.de
                                                       florian.metzger@uni-wuerzburg.de
                                                                                                   tobias.hossfeld@uni-wuerzburg.de
                 Johannes Specht
                                                                Franz-Josef Götz
                                                                                                              Jürgen Schmitt
    University of Duisburg-Essen, Germany
                                                             Siemens AG, Germany
                                                                                                         Siemens AG, Germany
           johannes.specht@uni-due.de
                                                         franz-josef.goetz@siemens.com
                                                                                                   juergen.jues.schmitt@siemens.com
                                                                    Feng Chen
                                                              Siemens AG. Germany
                                                             chen.feng@siemens.com
   Abstract-Bridge-local latency computation is often regarded
                                                                            However, the Deggendorf use case [5] showed that the
with caution, as previous efforts with the Credit-Based Shaper
(CBS) showed that CBS requires network wide information for
tight bounds. Recently, new shaping mechanisms and timed gates
                                                                         latency targets can be exceeded under certain conditions.
                                                                         The worst case delay in bridge h_n depends on the stream
                                                                         configuration of the earlier hops \{h_1,...,h_{n-1}\}, which includes
were applied to achieve such guarantees nonetheless, but they
require support for these new mechanisms in the forwarding devices.
                                                                         those streams that do not pass through h_n and share their
                                                                         TSpec. The upper bound in 802.1BA did not account for such
This document presents a per-hop latency bound for individual
streams in a class-based network that applies the IEEE 802.1Q
strict priority transmission selection algorithm. It is based on
self-pacing talkers and uses the accumulated latency fields
                                                                         cases and is not generally applicable. The task group then
                                                                         specified new mechanisms and was later renamed into Time-
                                                                         Sensitive Networking (TSN) [6] to account for the broader
                                                                         range of use cases.
during the reservation process to provide upper bounds with
bridge-local information. The presented delay bound is proven
mathematically and then evaluated with respect to its accuracy.
                                                                            The most prominent mechanism is specified in the En-
                                                                         hancements for Scheduled Traffic (EST) [7, IEEE 802.1Qbv],
It indicates the required information that must be provided for
admission control, e.g., implemented by a resource reservation
protocol such as IEEE 802.1Qdd. Further, it hints at potential
                                                                         also referred to as timed gates. It is based on a common
                                                                         sense of synchronized clock time, and timed gate control lists
                                                                         in each bridge. However, switching hardware must suppor
improvements regarding new mechanisms and higher accuracy,
      more information
                                                                         this new mechanism, and there is no distributed, dynamic
                                                                         admission control system specified for timed gates yet. Later
                                                                         Asynchronous Traffic Shaping (ATS) was specified in IEEE
                       I. INTRODUCTION
                                                                         P802.1Ocr [8], [9]. It applies per-stream shaping and allows
   When the Audio Video Bridging task group [1] first speci-
                                                                         for per-hop latency bounds for each stream with bridge-local
fied mechanisms for deterministic latency bounds, their initial information, but also requires support for this new transmi
efforts were focused on the Credit-Based Shaper (CBS). CBS
                                                                        sion selection algorithm in the switch fabric
```

Technical Report on Bridge-Local Guaranteed

https://nbn-resolving.org/ urn:nbn:de:bvb:20-opus-198310

Contribution: This work presents a forr

IEEE 802 10avl is used to re-shape traffic on a per-class

Contribution:

- Overview of required information from the Resource Allocation Protocol (RAP)
- Proven per-hop latency bound for Strict Priority (SP) transmission selection with only bridge-local information
- Initial evaluation of network capacity for an admission control system using this bound

WÜ

Preliminaries

Switch delay models, assumptions and constraints

Switch Delay Model

Switch Delay Model

- Processing delay d^{Proc} is device-specific and not considered
- Propagation delay d^{Prop} is bounded by max cable length
- Upper bound for $d^{TQ} + d^{SF}$ desired (queuing and transmission delay)

UNI WÜ

1. Frames of stream *i* do not exceed their max frame size $\hat{\ell}_i$ and min frame size $\check{\ell}_i$.

- 1. Frames of stream *i* do not exceed their max frame size $\hat{\ell}_i$ and min frame size $\check{\ell}_i$.
- 2. Talkers pace their traffic according to a **burst size** b_i and a **burst interval** τ_i . For any point t in time, the traffic sent by stream i in the time interval $[t, t + \tau_i]$ may not exceed b_i .

- 1. Frames of stream *i* do not exceed their max frame size $\hat{\ell}_i$ and min frame size $\check{\ell}_i$.
- 2. Talkers pace their traffic according to a **burst size** b_i and a **burst interval** τ_i . For any point t in time, the traffic sent by stream i in the time interval $[t, t + \tau_i]$ may not exceed b_i .

- 1. Frames of stream *i* do not exceed their max frame size $\hat{\ell}_i$ and min frame size $\check{\ell}_i$.
- 2. Talkers pace their traffic according to a **burst size** b_i and a **burst interval** τ_i . For any point t in time, the traffic sent by stream i in the time interval $[t, t + \tau_i]$ may not exceed b_i .

- 1. Frames of stream *i* do not exceed their max frame size $\hat{\ell}_i$ and min frame size $\check{\ell}_i$.
- 2. Talkers pace their traffic according to a **burst size** b_i and a **burst interval** τ_i . For any point t in time, the traffic sent by stream i in the time interval $[t, t + \tau_i]$ may not exceed b_i .

Assumptions and Constraints – Bridges

- **3**. Bridges use IEEE 802.1Q **priority transmission selection**, i.e., frames with a higher traffic class are always selected for transmission before frames with lower traffic classes.
 - (a) Within each traffic class, **FIFO** transmission selection is used.
 - (b) **No shaping** mechanisms are used in any considered traffic class. The earliest frame of each class is always regarded eligible for transmission.

Assumptions and Constraints – Bridges

- **3**. Bridges use IEEE 802.1Q **priority transmission selection**, i.e., frames with a higher traffic class are always selected for transmission before frames with lower traffic classes.
 - (a) Within each traffic class, **FIFO** transmission selection is used.
 - (b) No shaping mechanisms are used in any considered traffic class. The earliest frame of each class is always regarded eligible for transmission.

- 4. Each bridge h has a pre-configured maximum per-hop delay guarantee δ_p^h for each traffic class p.
 - (a) Admission control prevents the deployment of new streams that would cause delay violations for any deployed stream.

Latency Bound

Required information, formula and reasoning

Required Information \rightarrow TSpec

TSpec should include for stream *i*:

- \blacktriangleright Traffic class p_i
- Min frame size $\check{\ell}_i$ (e.g., 64 B)
- ► Max frame size $\hat{\ell}_i$ (e.g., 1542 B)
- Committed burst size b_i
- Burst interval au_i

including preamble and IPG

Required Information \rightarrow TSpec

TSpec should include for stream *i*:

- \blacktriangleright Traffic class p_i
- Min frame size $\check{\ell}_i$ (e.g., 64 B)
- ► Max frame size $\hat{\ell}_i$ (e.g., 1542 B)
- Committed burst size b_i
- Burst interval au_i
- Accumulated max latency $accMaxD_i^{h_k}$
- ► Accumulated min latency $accMinD_i^{h_k}$

$$accMaxD_i^{h_k} = \sum_{j=1}^k \delta_{p_i}^{h_j}$$

including preamble and IPG

$$accMinD_i^{h_k} = \sum_{j=1}^k \frac{\check{\ell}_i}{link \ speed_{h_j}}$$

 \blacktriangleright Worst case latency of stream *i* at bridge h_k is bounded by:

 \blacktriangleright Worst case latency of stream *i* at bridge h_k is bounded by:

UNI WÜ

UNI WÜ

Reasoning – Same-Class Bursts $\mathbf{z}_{\mathbf{x}}$

How many bursts from stream x can be in the queue of h_n at the same time?

Reasoning – Same-Class Bursts $\mathbf{z}_{\mathbf{x}}$

How many bursts from stream x can be in the queue of h_n at the same time?

Reasoning – Same-Class Bursts $\mathbf{z}_{\mathbf{x}}$

- How many bursts from stream x can be in the queue of h_n at the same time?
- Project time t_{obs} to interval $[t_{\ell}, t_r]$ at the talker h_1

$Reasoning - Higher-Class \ Bursts \ y_{i, \mathbf{x}}$

$Reasoning - Higher-Class \ Bursts \ y_{i,x}$

► Higher class frames ■ that arrive **later** can still interfere ⇒ observe duration Δt_{obs} instead of a single moment

$Reasoning - Higher\text{-}Class \ Bursts \ y_{i,x}$

- ► Higher class frames that arrive **later** can still interfere \Rightarrow observe duration Δt_{obs} instead of a single moment
- How long can these frames interfere?
 - \rightarrow as long as \square is in the queue: d_i^{TQ}
 - \Rightarrow recursive relationship: $d_i^{TQ} \leq \dots d_i^{TQ} \dots$

$Reasoning - Higher\text{-}Class \ Bursts \ y_{i,\mathbf{x}}$

- ► Higher class frames that arrive **later** can still interfere \Rightarrow observe duration Δt_{obs} instead of a single moment
- **How long** can these frames interfere?
 - → as long as \square is in the queue: d_i^{TQ} upper bound $\delta_{p_i}^{h_k}$ ⇒ recursive relationship: $d_i^{TQ} \leq \dots$ Q_i^{TQ} ...

Evaluation

Inaccuracies and comparison to ATS

A single bridge is observed

- A single bridge is observed
- Assuming periodic traffic (w.l.o.g.)

- A single bridge is observed
- Assuming periodic traffic (w.l.o.g.)
- Worst case construction and simulation

IN1

IN3

IN4

IN5

IN6

IN7

IN8

OUT2

- A single bridge is observed
- Assuming periodic traffic (w.l.o.g.)
- Worst case construction and simulation

UNI WÜ

14

B3

- Worst case construction
 - Steep increase of worst case delay when close to τ_i
 - Delay explodes near full bandwidth utilization
- SP bound moves linearly towards the full-utilization point
 - \sim 280 streams can be deployed (instead of \sim 350)

- Worst case construction
 - Steep increase of worst case delay when close to au_i
 - Delay explodes near full bandwidth utilization
- SP bound moves linearly towards the full-utilization point
 - \sim 280 streams can be deployed (instead of \sim 350)
- Comparison to Asynchronous Traffic Shaping (Qcr)
 - ATS bound starts lower, but reaches $\delta_{p_i}^{h_k}$ at the same point

UNI WÜ

15

- Influence of network topology
 - \rightarrow Frames arriving from a single port vs. many in-ports

Influence of network topology

 \rightarrow Frames arriving from a single port vs. many in-ports

Frames show less interference if they arrive from the same in-port

- Influence of network topology
 - \rightarrow Frames arriving from a single port vs. many in-ports
- Frames show less interference if they arrive from the same in-port
- SP latency bound reached when all frames arrive from different ports

- Influence of network topology
 - \rightarrow Frames arriving from a single port vs. many in-ports
- Frames show less interference if they arrive from the same in-port
- SP latency bound reached when all frames arrive from different ports
- This is not solved by a simple subtraction!
 - \rightarrow The time interval, during which higher class frames can interfere, would become larger than the per-hop delay. $\Delta t_{obs} \not\leq \delta_{p_i}^{h_k}$

UNI WÜ

16

Comparison of Network Capacities – Setup

- Deployment of random* streams in a small network
- Admission control: check whether $d_i^{TQ,SF} \leq \delta_{p_i}^{h_k}$ for every hop

Comparison of Network Capacities – Setup

- Deployment of random* streams in a small network
- Admission control: check whether $d_i^{TQ,SF} \leq \delta_{p_i}^{h_k}$ for every hop

bridge bridge bridge bridge bridge

- *Random streams...
 - Random talker
 - Random listener
 - Random configuration from table \rightarrow
 - 20 instances of each parameter set
 - Mean capacity with 99.5% confidence intervals reported

Traffic class p_x	Burst $b_x = \hat{\ell}_x$	Burst interval $ au_x$
3 (high)	128 B	250 μs
3 (high)	256 B	500 µs
3 (high)	512 B	1000 µs
2 (low)	1024 B	2000 µs
2 (low)	1522 B	4000 µs

Comparison of Network Capacities – Setup

- Deployment of random* streams in a small network
- Admission control: check whether $d_i^{TQ,SF} \leq \delta_{p_i}^{h_k}$ for every hop
 - *Random streams...
 - Random talker
 - Random listener
 - Random configuration from table \rightarrow
 - 20 instances of each parameter set
 - Mean capacity with 99.5% confidence intervals reported

Parameters

- Number of deployed streams: 100 2000
- Per-hop delay guarantees for both traffic classes (δ_3, δ_2) : 100 µs 8000 µs

Traffic class p_x	Burst $b_x = \hat{\ell}_x$	Burst interval $ au_x$
3 (high)	128 B	250 µs
3 (high)	256 B	500 µs
3 (high)	512 B	1000 µs
2 (low)	1024 B	2000 µs
2 (low)	1522 B	4000 µs

Comparison of Network Capacities – SP vs ATS

Comparison of Network Capacities – SP vs ATS

▶ No significant difference with small per-hop delay guarantees δ_{p_i}

- Per-hop reshaping shows little effect if only one burst of each stream is in the network at the same time (cf. residence times)
- SP is a viable alternative if burst intervals are large in comparison to δ_{p_i}

Comparison of Network Capacities – SP vs ATS

No significant difference with small per-hop delay guarantees δ_{p_i}

- Per-hop reshaping shows little effect if only one burst of each stream is in the network at the same time (cf. residence times)
- SP is a viable alternative if burst intervals are large in comparison to δ_{p_i}
- ATS shows better network utilization than SP for large guarantees δ_{p_i}
 - Multiple bursts of the same stream in the network if $\tau_i \ge$ end-to-end delay
 - Per-hop beneficial for less impairment
 - SP may still be a viable: remaining bandwidth can be used by best effort traffic

Conclusion

- Bridge-local bounded latency with SP is feasible
 - **Proven** delay guarantee with low complexity for **distributed** systems
 - Bound only applicable in admission control scenarios
 - Streams whose latency exceeds their guarantee must be denied
- SP shows good network utilization in many situations
 - Capacity comparable to ATS for "large" transmission intervals
 - Still viable with "small" intervals \rightarrow remaining bandwidth can be used by BE
- Requirements are similar to other mechanisms
 - Most information is already contained in current TSpec fields of Qcc
 - Accuracy can be improved by accMinLatency and minFrameSize
- Can be adapted depending on the scenario
 - Improving inaccuracies due to frame locality
 - Adaptation for other mechanisms (e.g. distributed admission control with TAS)

