Industrial internet over service provider networks

Tongtong WangHuawei TechnologiesXueqin JiaChina UnicomHuanan ChenChina TelecomRuibo HanChina Mobile

Agenda

- Industrial internet cases over carrier networks
 - > Manufactory
 - > Smart grid
 - > Smart port
 - > Network slicing
- Multiple approaches to provide guaranteed SLA (service level agreement) in carrier networks
 Concept and comparison
- Suggestions in TSN for Service Provider Networks discussion
 How different TSN Ethernet techniques fulfill industrial internet requirements
 Recommendations for bounded latency/jitter/reliability
- Some initial research and recommendations

Enterprise-wide network over carrier networks

Traditional hierarchy for industrial network

- Different network requirements on traditional industrial hierarchy.
- Service provider networks connect multiple remote factories/buildings.
 - > Coordinated computation in public cloud
 - > Remote monitoring
- SLA guaranteed service provider networks enable diverse vertical applications, e.g. to coordinate remote operations/manufactories.
- Requirements:
- High reliability

http://www.ieee802.org/3/ad_hoc/ngrates/public/18_03/woods_nea_01_0318.pdf

(converged networking)

Smart grid requirement over carrier networks

Strict requirements:

- ultra high reliability
- bounded low latency

Traditionally smart grid monitoring and controlling applications are connected by separate networks.

5G URLLC networking enables Smart Grid tele-protection over carrier network, which requires strict latency bound

(5ms) according to 3GPP TS 23.501.

■ 5Ql+ Value+	Resource Type⊷	Default Priority Level↩	Packet Delay Budget⊷ (NOTE 3)⊷	Packet Error∉ Rate ₽	Default Maximum Data Burst Volume∉ (NOTE 2)∛	Default୶ Averaging Window୶	Example Services∂
■ 85+ ²	c,	21₽	5 ms⊬ (NOTE 5)≁	10 ⁻⁵ ,	255 bytes₽	2000 <u>ms</u> ÷	Electricity Distribution- high voltage (see TS 22.261 [2]).+' V2X messages (Remote Driving, See TS 22.186 [111], NOTE 16)+'

IEEE TSN Meeting, July 2020

https://www.gsma.com/futurenetworks/wp-content/uploads/2020/02/5_Smart-Grid-Powered-by-5G-SA-based-Network-Slicing_GSMA.pdf

4

Smart port over small regional network

"An automated ship-to-shore (STS) crane that was operated via a 5G link to the control center and used to lift containers."

- To improve shipping efficiency and safety, video surveillance and AI detection are used to help controllers.
- Onsite remote controlling requires strict latency bound (30ms)
- Requirements
 - High Reliability
 - Bounded latency

https://www.maritime-executive.com/article/5g-smart-port-system-trialed-at-qingdao

Network slicing over carrier networks

- 5G-ACIA documents describe network slicing in factories, in order to support multiple applications in converged network.
- IETF discussion about slicing architecture over all possible transport networks. <u>https://tools.ietf.org/html/draft-ietf-teas-enhanced-vpn-05</u>
- Network slicing relates to differentiate SLA guarantee in a converged network.

Service provider network characteristics:

- 1. Security
- 2. Scalability
- 3. Maintainability
- 4. Reliability
- 5. SLA guarantee capability

6. ..

Multiple approaches to provide SLA guarantee

• Multiple possible approaches on different network layers

- Lower layer methods provide more strict resource separation, less chance of interference from other users;
 - Advantages: Security / easier for OAM / ..
- Higher layer methods provide more statistical multiplexing capability, more cost efficiency for best effort traffics;
 - Advantages: Cost efficiency / flexibility / scalability / ..

Queueing and forwarding plane for bounded latency

Examples on latency guarantee approaches

- Different Qos/TSN schedulers and shapers, either synchronized or unsynchronized, provide differentiated service levels (SLA) on shared network resources;
- This analysis leads to network slicing concepts, to divide network and share among users/applications;
- Multiple queueing and forwarding techniques are capable to support network slicing with multiple levels of service guarantee;
- These approaches can be combinational solution in service provider networks to satisfy specific requirements and constraints;

TSN for Service Provider Networks discussions

Most interested in,

> How TSN techniques in carrier networks can help fulfill industrial internet requirements

> Suggestions and Comparisons of TSN techniques on

- latency/jitter
- reliability
- Scalability
- Others

> Recommendations for

- bounded latency
- Jitter
- High Reliability

- ..

Thank you.

Latency analysis – strict priority

Based on Network calculus methodology, Setup arrival model as: α (t) = burst_size +rate * t;

With Strict priority scheduler, theoretically high priority traffic suffer no interference from low priority traffics. Consider only same class traffic multiplexing as blind multiplexing. Service curve can be modeled as: β (t) = (C - Σ FlowRate_{other})* (t - (Σ b+L₀)/(C - Σ FlowRate_{other}));

Observations on bounded latency provided by strict priority:

- Low bounded latency is achievable when high priority traffic is constrained in low utilization .
- With increasing utilization of high priority traffics, latency bound deteriorates quickly.
- Recommendation: Strict priority scheduling fits well for bounded low latency applications with low utilization. e.g. smart grid tele-protection application

If high priority traffic is constrained, say 10%, second priority class get bounded latency: $\beta_k^{SP}(t) = \left(C - \sum_{j=k+1}^N \sum_i \rho_{i,j}\right) * \left[t - \frac{\sum_{j=k+1}^N \sum_i \sigma_{i,j} + \max(L_{max,i,j})}{c - \sum_{j=k+1}^N \sum_i \rho_{i,j}}\right]^+$

When bandwidth for a queue is guaranteed, its queueing latency increasing linearly with aggregated burst size.

Recommendation: constraints on aggregation scale and burst size;

http://www.ieee802.org/1/files/public/docs2020/dd-grigorjew-strict-priority-latency-0320-v02.pdf,

Discussion on achieve bounded latency with edge shaping and simple priority scheduling 11 IEEE TSN Meeting, July 2020

Latency analysis – Credit based shaper

Mohammadpour E, Stai E, Mohiuddin M, et al. Latency and backlog bounds in time-sensitive networking with credit based shapers and asynchronous traffic shaping //2018 30th International Teletraffic Congress (ITC 30)

Latency analysis – Time Aware Shaper/TDM similar

$$\beta(t) = \frac{c}{n} [t - (n - 1)(T_c + Gb)]^+$$

- Assume time windows of same width Tc;
- Guardband $Gb = \frac{L}{C}$;
- n time windows open in rotation;

Worst Case Delay = $(n-1)(T_c + Gb) + b*n/C$;

- Worst case delay increases with number of time windows;
- TAS/TDM methods have larger lower bound, since it can not share idle bandwidth among competing traffics.
- TAS/TDM provide smaller jitter, given reasonable configurations.

(c) TDMA service curve $(\upsilon_{c,o_i,T_i}\otimes\beta(t))$

Figure 3.1: Illustration for TDMA

Summary on latency analysis

No universal method fits all delay critical scenarios.

For traffic type of token bucket, α (t) = b + rt; generally,

- Strict Priority fits for low bounded latency and low bandwidth applications -- 5G smart grid tele-protection is good example;
- Weighted Round Robin fits for bounded latency and bandwidth guaranteed applications.
- TAS/TDM fits for bandwidth guaranteed and low bounded jitter applications; //considering CQF variants.

For traffic type of periodic traffics, $\alpha(t) = TSPEC$;

- With global time sync, TAS/TDM fits well for low bounded latency and low jitter; roughly, Worst Case Delay = T_c + Gb;
- Coordination of Network cycle and Application cycle in Industrial automation environment probably will be a good example, at cost of time synchronization.

Further analysis

- From single hop delay to path delay.
- Consider examples with combinational approaches.
 - E.g. Weighted Round Robin + Strict Priority
- Compare from multiple performance perspectives, not only on latency analysis. Consider more on jitter, packet loss, reliability;
- Discussion on example use cases and requirement.
- Other suggestions?