$ETHERNOVI\Delta$

TRANSFORMING HOW CARS OF THE FUTURE ARE BUILT

IEEE802.1DG – TRAFFIC CATEGORIES 202

2020-08-04

IEEE contribution

IEEE802.1DG/D1.2

111. Latency and congestion loss

211.1 Introduction

3 << Editor's note: This clause is a suggestion based on the presentation Suggestions for Automotive Profile 4 outline http://www.ieee802.org/1/files/public/docs2019/dg-finn-auto-prof-outline-0119-v02.pdf, presented 15 5 Jan 2019 at the IEEE 802.1 interimplenary in Hiroshima, Japan.

6 Possible content could include:

- 7 1. Best effort flows
- 8 2. Continuous vs. Intermittent flow
- Intermittent flows can be scheduled. Hard to mix both types on same port
- 10 3. Time scheduling for intermittent flows
- 11 4. Bounded latency, zero congestion loss
- Pick queuing method(s) for continuous flows
- 13 5. Frame preemption
- 14 6. Cut-through forwarding
- 15 7. Separation by time (802.1Qbv)
- 16 8. Separation by traffic class
- 17 9. Filtering and policing (so that misbehavior cannot ruin latency)

Proposal for IEEE802.1DG

Туре			QoS		Security
Alarms/Events	Continuous	Periodic (1ms-10ms)	Minimum Latency	Safety	Authenticate
Control	Continuous	Periodic (1ms-100ms)	Fixed Latency	Safety	Authenticate
Audio/Video	Temporary	Periodic (50µs-1ms)	Bounded Latency	Quality (drop and mitigate)	tbd
Sensor-Data	Continuous	Periodic (~10ms)	Bounded Latency	Last is best (drop)	Authenticate
Diagnostics	Temporary	Bursty	Best Effort	Lossless (retransmit)	Authenticate/En crypt
User-Data	Temporary	Bursty	Best Effort	Lossless (retransmit)	Encrypt

Safety Critical

- Usually small fixed size constant payload (exception warning-chime?).
- Must be periodic, to ensure alive status.
- Single loss may lead to action.
- Alarms and Events
 - Must be delivered at minimum latency
 - Negative/alive messages must take same route to ensure configuration
 - Can PreEmption be guaranteed?
 - Policing should be avoided.
- Control
 - Must be delivered at Fixed Latency, meaning minimum jitter as linked to controlloop
 - PreEmption desired.
 - Policing accepted to limit effect of malfunction.

Audio/Video

- Does not include warning-chimes.
- Driven by customer perceived quality in normal operation.
- Can drop for emergency.
- Policing to limit effect of malfunction.
- High data volume (video) consider Jumbo-Frames
- Transient Noise Compensation
 - Minimum latency (50µs).and jitter
 - Consider Cut-Through (same line rate requirement).
 - PreEmption desired.
- Intercom
 - Low latency (100 μ s) and jitter for echo compensation
 - PreEmption desired.
- Entertainment and Navigation
 - Constant average bit-rate over 1ms-10m.
 - Jitter within limits.

Proposal for IEEE802.1DG

Туре	Policing	PreEmption	CutThrough	Redundancy
Alarms/Events	No	ensured?	ensured?	to ensure delivery? (fail safe/fail operational)
Control	?	ensured?	Not needed	to ensure delivery? (fail safe/fail operational)
Audio/Video	Yes	No	Use-Case/Topology	to ensure quality?
Sensor-Data	Yes	No	No	align with sensor redundancy (fail safe/fail operational)
Diagnostics	Yes	No	No	No
User-Data	Yes	No	No	No

Redundancy Discussion

- Where does data loss occur?
 - In the network
 - Congestion (ingress or egress)
 - Link or Device (multiple link) failure
 - Loss of data source
 - Loss at/of data consumer
 - Congestion (buffer overrun)
 - Device failure
 - Power loss
- After one path is lost
 - Ignore only for quality driven data (second failure will loose system)
 - Fail safe after full loss immediate transition to a locally safe state (extend mission wearout)
 - Fail gracefully incoming data used to mitigate transition to a system safe state (choose time to limit chance of second failure)
 - Fail operational continue mission for extended period (no reduction of safety level)

