On Standardization of Cut-Through Forwarding (CTF)

Johannes Specht
Preamble

• This presentation collects **technical** work on cut-through forwarding (CTF).

• It is in support to:
 • Reach a common view in IEEE 802.1 amongst goals, needs, and operation of potential standardization activities around CTF.
 • **Discuss potential standardization of CTF with other IEEE 802 working groups.**
 • Contributions by Johannes Specht to this presentation are **individual contributions**.
Table of Contents

1. Where CTF Doesn’t Matter
2. Where CTF Matters
3. CTF-Specific Issues and Mitigations
4. What to Standardize, and Where
5. Summary

Proposal:
Focus subsequent technical work.

Proposal:
Reach a common point of view where and how to address these.

Proposal:
On contents, and distribution.
Where CTF Doesn’t Matter

Short overview, subsequently excluded
(Relatively) Slow Bridges

- Bridge-internal relay for both, S&F and CTF traffic, out-weights CTF delay savings
- Link speed relationship - For example:
 - At coast-to-coast links, propagation delays are several milliseconds.
 - At 100GBit/s, these delays can be magnitudes higher than the other relevant quantities (frame lengths, etc.)
Fan-in, Link Speed Transition

Large Bridge Fan-In of Asynchronous, Uncoordinated Transmissions

- Delay on a CTF frame X dominated by the sum of CTF frame lengths from all other Ports.

Link Speed Transitions

- **Slow-to-Fast:**
 Frame length known at end of frame reception, but required to avoid buffer underruns during transmission
 \(\rightarrow\) no CTF possible, unless frame lengths already known, etc.

- **Fast-to-Slow:**
 Maximum delay savings out-weighted, though less complex to implement than Slow-to-Fast.
Where CTF Matters

Cases that benefit significantly from CTF. Can be extended, though it is suggested to provide technical proof.
General Assumptions

Identical properties for all CTF Streams

- Constant frame length
- Periodic, with period < max. E2E delay

Class based service

- CTF traffic in a dedicated traffic class, highest priority level
- S&F for all other lower priority traffic classes
- If preemption is used:
 - CTF traffic: preempting
 - S&F traffic: preemptible, 127B. Max. Fragment

Network

- Identical links speeds at all hops, typically low (e.g., 100 Mbit/s)
- Illustrated by Ring/Chain topology, indication given if this is not a requirement

Bridges

- 64B. CTF delay (usually <a bit more than> 14 ... <many> Bytes)
- 0B. additional Bridge-internal delay (Relay, etc.)
Asynchronous - Chains & Rings

Description

• Uncoordinated talker transmission times
• Preemption used
• Low fan-in (i.e., rings/chains)
• Medium...large CTF frames (!)

Reduction of Maximum Delay

128B CTF Frames \rightarrow 17% lower
256B CTF Frames \rightarrow 30% lower
1542B CTF Frames \rightarrow 46% lower
Global CTF Time Slice, Uncoordinated Talkers

Description

- “light-weight” time scheduling
 - CTF-traffic XOR S&F traffic at a time
 - Similarities with Cyclic Queuing and Forwarding
- No interference by S&F frames, no preemption required
- Low fan-in (chains/rings)

Reduction of Maximum Delay

- 128B CTF Frames → 25% lower
- 256B CTF Frames → 38% lower
- 1542B CTF Frames → 48% lower
Coordinated Talkers

Description

• Coordinated Talker transmissions
 • Event-based/triggered by frame reception (e.g., responses aligned to initial PLC frames), or
 • Based on sync. time (“scheduled”)

→ No interference within CTF class - relaxes fan-in\(^1\) & frame length limitations
• Preemption used

Reduction of Maximum Delay

128B CTF Frames → 25% lower
256B CTF Frames → 50% lower
1542B CTF Frames → 89% lower

Note 1: Illustrated for Chain-/Ring Topologies, but not limited to these.

24.01.2020
On Standardization of Cut-Through Forwarding (CTF), Johannes Specht
“Classic” Time-Division Multiplexing (TDM)

Description

• Global scheduling (every Port)
 • (CTF-frame A) XOR (CTF frame B OR S&F frame) at a time

→ No interference by S&F frames, or by CTF frames from other reception Ports (i.e., relaxed fan-in limits)
→ No preemption required

Reduction of Maximum Delay

- 128B CTF Frames → 50% lower
- 256B CTF Frames → 75% lower
- 1542B CTF Frames → 96% lower

Note 1: Illustrated for Chain-/Ring Topologies, but not limited to these.
CTF-specific Issues and Mitigations
Overview of Issues

#1 Corrupted Frame Headers are discovered too late, i.e. after forwarding decisions have been made

• Frames forwarded to wrong transmission Ports or wrong Traffic Classes can circulate in topological rings
• Frames forwarded to wrong transmission Ports might be considered a security issue (i.e., contents readable in untrusted network segments)
• Frames forwarded to wrong transmission Ports can cause congestion (i.e., unplanned interfering traffic)
• Frames forwarded to wrong Traffic Classes can cause congestion (though transmission Ports might be correct)

#2 Oversized frames are discovered too late

• Unexpected large frames (e.g., jumbo frames) in a CTF Traffic Class can cause congestions for all other frames in this class (unplanned interfering traffic)
Mitigation: Classic TDM (by itself)

Description

• CTF frames “caught” in associated timeslots
 → Corrupted frames can be identified (i.e., out of timeslot), and dropped

• Extra scheduling constraints for coverage apply

• Already standardized in IEEE Std 802.1Q-2018:
 • Input Gates (PSFP)
 • Transmission Gates (EST)
Mitigation: Full S&F Hops

Description

• General solution to handle corrupted headers.
• Moderate use (i.e., excessive use defeats the purpose) - examples:
 • At chain/ring entry points
 ➔ Prevents colliding frame bursts from two reception Ports (congestion)
 • Once per ring
 ➔ Prevents circulation – at most one round
 • From trusted to untrusted network segments
 ➔ Prevents exposure of frame contents to untrusted network segments
Mitigation: Distributed S&F Hop in Rings

Description

• Ring circulation: Full S&F hop may be split to different locations, as long as forwarding address sets are covered.
• Assumes header corruption leading to address set changes appears at most per round - more than once seems unlikely.
→ Avoids S&F during fault-free operation, requires planning.
• Potential realizations for CTF/S&F decision:
 • FDB-based (though can be large)
 • IPV-based (smaller, split CTF class)
Mitigation: Tail Cutting and Invalidation

Description

• Corrupted CTF frame discovered at end of reception (e.g., FCS error), while already under transmission:
 • Stop ongoing transmission (i.e., “tail cutting”)
 • Invalidate (e.g., attach incorrect FCS)
• Prevents circulation, when rings are large, and affected frames are short enough
 → In conjunction with frame size limiters (IEEE Std 802.1Q-2018)
Further Thoughts on Mitigations

Definition of Goals Required

• Example:
 A frame shall not pass the same transmission Port more than once due to frame header corruption at one hop.

• Enhances technical discussion
• Identify appropriate/effective mitigation methods/combinations thereof for particular scenarios

Network Aspects

• Mitigating CTF issues is network dependent – specific Bridges mechanisms may or may not be sufficient in a given network.
• Example: Tail cutting in 3 hop rings appears insufficient, but may be ok in a 30 hop ring.
What to Standardize, and Where
IEEE 802.1 Parts (1)

Dedicated standard – not an Amendment to IEEE 802.1Q

• Not limited to IEEE 802.1Q
 • Other IEEE 802.1 Standards (e.g., IEEE 802.1CB, IEEE 802.1AS)
 • End station aspects
 • Network aspects

• Limit to “CTF capable” functions and protocols (e.g., from the Forwarding Process):
 • Only contained IEEE 802.1 Stds functions and protocols work in presence of CTF
 • No statements on (im)proper operation of functions and protocols beyond the listed ones (i.e., these are “out”, no need to address compatibility with all IEEE 802.1 protocols)
 • Start with the important protocols and functions, then extend

• Readability
 • Avoids cluttering, keeps functional additions and changes organized
 • IEEE 802.1Q alone has more than 2000 pages ...
IEEE 802.1 Parts (2)

CTF standard contents (not a Standards document clause structure)

- **Existing Bridge functions/protocols** (e.g., pieces from the 802.1Q-2018 forwarding process), and modifications (if needed)
- **New Bridge functions** (e.g., tail cutting/CRC invalidation)
- **Management Interfaces**, Counters, etc.
- **Where CTF Matters** - and where not?
- **Header corruption mitigation**
- **Device conformance**
- **Network conformance** - IEEE conformant networks using CTF should apply mitigations to handle CTF-specific issues!
- **MAC Service Interface (???)**, frame reception
Service Interface for Frame Reception

Involve IEEE 802.3

• Reach agreement in IEEE WG 802.1 on CTF in general
• Formulate requirements, for example:
 • Early reception event: Header fields/tags for Bridge forwarding decisions
 • Late reception event: FCS Status
 • Continuous: Transient Frame Length and payload
• Request a solution from IEEE WG 802.3
Summary

1. Where CTF matters and where not on a technical level
2. CTF and appropriate mitigations, definition of goals may help
3. IEEE 802.1 Standard, not an amendment
4. Work towards a common view in 802.1 for subsequent discussion with other groups (e.g., 802.3)
Thank you for your Attention!

Questions, Opinions, Ideas?

Johannes Specht
Dipl.-Inform. (FH)

johannes.specht.standards@gmail.com
T +49 (0)170 718-4422