
IEEE 802.1 Security
MACsec Privacy Frame Stats

Review Updated Version 2
Don Fedyk – don.Fedyk@labn.net

6/21/2021 IEEE 802.1 Security 1

Disclaimer

• This is a work in progress. The material here is for discussion purposes
and may contain errors.

6/21/2021 IEEE 802.1 Security 2

Configuration parameters for MAC Privacy
802.1AEdk
• How big should an MPPDU be?

• Examples Showing Encapsulation Arithmetic
• Updates from v00
• Length discussions
• Bytes to Octets

6/21/2021 IEEE 802.1 Security 3

Determining Frames Size and Rates for MAC
Privacy Channels and Frames
• PrY Channel Frames:

• Fragmentation
• Fragmentation is default enabled. Default is on.

• Allows Higher efficiency, (allows late addition) – not in the standard.
• Setting an MPPDU too small can force fragmentation when Max size user frames are

encountered.
• Determine the maximum user frame size “User Data Frame size”.

• PRY Frames
• No Fragmentation
• Determine the maximum user frame size “User Data Frame size”.
• This must be greater that or equal to the User Data Frame size or larger frames could

be dropped.

6/21/2021 IEEE 802.1 Security 4

MAC Privacy – Which Length?

6/21/2021 IEEE 802.1 Security 5

Encapsulated Frame

SecTAG Secure Data ICV

User Data

MACsec confidentiality protected
frame data

MPPDU MAC
Addresses

MACsec
EtherType

VLAN
TAG

Priority

User Data

MACsec integrity
protected

MAC Addresses

PrY Destination
MAC Address

PrY Source
MAC Address

MPP
EtherType

Component Type =
Encapsulated Frame

DA SA user data

Component Length

DA SA

MPPDU user data

User data frame

DA SAVLAN tagged user data frame

PrY Destination
MAC Address

PrY Source
MAC Address

FCS

FCS

padding

Trailing Pad

Component Type =
Trailing Pad

Clause 17 Draft figure

MAC Privacy

This is the source of the
defining length

MAC Privacy & MACsec

Standard Ethernet Frames
Standard Ethernet encapsulation:

• Frame sizes are dependent on media

• Ethernet Standard are 1500 octets of user data

• Ethernet Jumbo is 9000 octets of user data

• Uses the Media overhead octets

6/21/2021 IEEE 802.1 Security 6

MAC destination MAC source VLAN-TAG Eth -Type User Data FCSMAC destination MAC source

6 octets 6 octets 4 octets 2 octets 46-1500 octets 4 octets

MAC Privacy allows for an unfragmented Max User data frame
This means encapsulating nominally up to 1518 octets but possibly higher.
Other formats (e.g. LLC, SNAP) are supported as well but are less than or equal
to 1500 octets. IEEE 802.3 allows up to 2000 for envelope frames 802.3as-2006

Between 60 – 1514 (1518 with VLAN or higher)
User data no FCS
a.k.a. L2 MTU

Goal is to determine the MTU for the situation

MAC Privacy MPPDU

• MAC Privacy Encapsulation adds
• 2 octets for Fixed Full frames
• +4 octets for a fragment – but that can be absorbed since fragments are variable
• Therefore 2 octets plus user data frame 1518 + 2.

6/21/2021 IEEE 802.1 Security 7

MAC DA MAC SA VLAN ET User DataMPPDU
ET

MPPDU
Header

2-6 octets2 octets 1518 octets = new config value “userDataFrameSize”

1520 octets (2 octets overhead counts as padding)

This is not a frame. A PrY Frame in non collocated PrY adds 16 octets more.

userDataFrameSize

Where User data starts counting
Is still be discussed or

User data octet count

• 1500 octets of Ethernet Frame User data is:
• 1518 User data octets for MAC Privacy – but-
• 1520 octets are needed for an unfragmented 1518 octets.
• From a statistics collection perspective these 2 octets are padding and

they belong to the MAC PrY padding count. There are no stats for
MPPCI header overhead – they are collected as padding. The rational
is that empty frames are all padding.

• However, when comparing MAC PrY to MACsec for the same frames if
multiple frames are carried in an MPPDU there is a net savings of
overhead.

6/21/2021 IEEE 802.1 Security 8

Summary
• Only need to configure the PrY L2 MTU e.g. 1518 or similar (e.g. 9018)

• This number is whatever the base traffic user traffic format is for example PBB frames would use a larger
number.

• MPPDU length will be fixed at 1518 +2 octets. (1520)
• The Frame is assumed to carry 1500 octets – often this value may never be met with traffic for example 1492

might be the IP MTU.

• As far as MAC privacy this value 1518 is the configurable encapsulation payload.
• userDataFrameSize, user-data-frame-size

• If this number is configured smaller than source user traffic, some large frames may be
fragmented – for channels.

• This number must be supported for privacy frames or the 1500 (9000) Frame Payload of the user
frame is impacted.

• If a smaller payload is required for other reasons for PrY channels this number can be adjusted
downwards this guideline is merely to prevent fragmentation of whole frames, but
implementations may fragment anyway in the interest of reducing delay or increasing efficiency.

• With a 64 octet Minimum Fragment the maximum wasted data is 63 octets.

6/21/2021 IEEE 802.1 Security 9

Data Frame Fitting
MinFrag = 64 User MinFrag = 56 + MPPCI

• User Data Configuration = 1518 (1500 Frame data octets)
• MPPDU = 2 octets (Real size 1520)
• Frame Size 1572 Fits a 1500 octet frame with no padding.
• MAC_PRY + MAC_SEC Headers = 52

6/21/2021 IEEE 802.1 Security 10

One MPPDU
"2": {

"1": {
"length": 1572,
“frame_data": 1500,

"mppdu_ovrhd": 2,
"mac_pry_hdr_icv": 52

}
}

One MPPDU
"2": {

"1": {
"length": 1572,
"serial_num": 0,
“frame_data": 1500,
"mppdu_ovrhd": 2,
"mac_pry_hdr_icv": 52,

},
"2": {

"length": 2,
"pad_data": 2,
"padtype": "trailing"

}

User Data Config 1518
User data octets = 1518
Pad Octets = 2 octets
IETF port stats 1572 (includes 52
octets encapsulation)

When User
Data config is
longer - it
spills into extra
padding
1520

More than One MPPDU
"1": {

"1": {
"length": 1518,
"frame_data": 1442,
"mppdu_ovrhd": 6,
"mac_pry_hdr_icv": 52,
"express": false,
"seq": 0,
"initial": true,
"final": false

},
"2": {

"length": 53,
"pad_data": 53,
"padtype": "trailing"

}
},
“2": {

"1": {
"length": 116,
"frame_data": 58,
"mppdu_ovrhd": 6,
"mac_pry_hdr_icv": 52,
"express": false,
"seq": 1,
"initial": false,
"final": true

}

When Frame is one octet
too large.
Fragmentation occurs for
1500 octet of frame data

The increase header for
fragments pushes up the
padding count by 10
octets. 2 to 12.

MinFRAG = 64
58 + 6 MPPCI header

User Data Config 1520
User data = 1518
Pad Octets = 4 octets
IETF port stats 1574
(includes 52 octets
encapsulation)

User Data Config 1517
User data = 1518
Pad Octets = 53 + 6 + 6 = 65
1455 leftover for next
frame
IETF port stats 1571 + 1571
(includes 52 octets
encapsulation/ PrY frame)

Worst Case Padding is
53 octets (64-1-10)for
frame that is long by
one octet.

Under by 1 octet causes 63 (65 – 2) octets
padding additional. Under by 2 - 62, 3-61, 4-60
etc.

Config larger by 2 octets causes 2 octets additional“Perfect Fit”

Discussions

• During the Review Mick comment user data (1500+18 = 1518) should
never be smaller than 64 octets. Since this fragment size includes
MPPCI (6 octets) it would change the math to 64+6 = 70 octets.

• Additional padding is now 59+6+6-2 or 69 octets. (this excludes the
MAC sec and MAC privacy additional 52 octets.)

• Padding stats would reflect this increase.
• See next slide.

6/21/2021 IEEE 802.1 Security 11

Data Frame Fitting
MinFrag = 70 User MinFrag = 64 + MPPCI

• User Data Configuration = 1518 (1500 Frame data octets)
• MPPDU = 2 octets (Real size 1520)
• Frame Size 1572 Fits a 1500 octet frame with no padding.
• MAC_PRY + MAC_SEC Headers = 52

6/21/2021 IEEE 802.1 Security 12

One MPPDU
"2": {

"1": {
"length": 1572,
“frame_data": 1500,

"mppdu_ovrhd": 2,
"mac_pry_hdr_icv": 52

}
}

One MPPDU
"2": {

"1": {
"length": 1572,
"serial_num": 0,
“frame_data": 1500,
"mppdu_ovrhd": 2,
"mac_pry_hdr_icv": 52,

},
"2": {

"length": 2,
"pad_data": 2,
"padtype": "trailing"

}

User Data Config 1518
User data octets = 1518
Pad Octets = 2 octets
IETF port stats 1572 (includes 52
octets encapsulation)

When User
Data config is
longer - it
spills into extra
padding
1520

More than One MPPDU
"1": {

"1": {
"length": 1512,
"frame_data": 1436,
"mppdu_ovrhd": 6,
"mac_pry_hdr_icv": 52,
"express": false,
"seq": 0,
"initial": true,
"final": false,

},
"2": {

"length": 59,
"pad_data": 59,
"padtype": "trailing"

}
},
"2": {

"1": {
"length": 122,
"frame_data": 64,
"mppdu_ovrhd": 6,
"mac_pry_hdr_icv": 52,
"express": false,
"seq": 1,
"initial": false,
"final": true

}

When Frame is one octet
too large.
Fragmentation occurs for
1500 octet of frame data

The increase header for
fragments pushes up the
padding count by 10
octets. 2 to 12.

MinFRAG = 70
64 + 6 MPPCI header

User Data Config 1520
User data = 1518
Pad Octets = 4 octets
IETF port stats 1574
(includes 52 octets
encapsulation)

User Data Config 1517
User data = 1518
Pad Octets = 59 + 6 + 6 = 71
1449 leftover for next
frame
IETF port stats 1571 + 1571
(includes 52 octets
encapsulation/ PrY frame)

Worst Case Padding is
59 octets (70-1-10) for
frame that is long by
one octet.

MPPDU under (frame over) by 1 octet causes 69
(71– 2) octets additional padding. Under by 2 - 68,
3-67, 4-66 etc.Config larger by 2 octets causes 2 octets additional“Perfect Fit”

Summary

• Min Fragment of 64 user data means:
• 64 octets of User data + 6 octets MPPCI = 70 octets (6 octets pad – 64 octets user data)
• 64 octets of pad + 2 octets MPPCI = 66 octets (all counts as pad)
• Max 57 octets of unusable padding + 2 octets of MPPCI = 59 worst case (all counts as pad)

• Alternative where MPPCI + User data = 64 means:
• 58 octets of User data + 6 octets MPPCI = 64 octets (6 octets pad – 58 octets user data)
• 62 octets of pad + 2 octets MPPCI = 64 octets (all counts as pad)
• Max 51 octets of unusable padding + 2 octets of MPPCI = 53 worst case (all octets are pad)

Note there is a rare case where a Fragment that is too big by one octet can be
fragmented into two fragments both greater than or equal to min size and the
math becomes 70-1-6 or 63 octets of extra padding. Essentially there is no increase
in the first Fragment MPPCI because it is already a fragment.

6/21/2021 IEEE 802.1 Security 13

Current proposal

Original Discussion

Notes

• Constants use for computation (Straight from python)
SMAC = 6
DMAC = 6
VLANTAG = 4
ETHTYPE = 2
MPPCI = 2
MPPCI_LONG = 6
SECTAG = 8
SCI = 8
ICV = 16
FCS = 4
USER_FRAME_OVERHEAD = SMAC + DMAC + VLANTAG + ETHTYPE # = 18
MACSEC_PRY_OVERHEAD = SMAC + DMAC + VLANTAG + SECTAG + SCI + ICV + FCS # = 52
MACSEC_OVERHEAD = SECTAG + SCI + ICV + FCS # = 38

6/21/2021 IEEE 802.1 Security 14

MAC Pry Statistics What get counted where
counter64 outMppdus = 1
counter64 outUserFrames = 1
counter64 outUserOctets = 1518
counter64 outPadOctets = 2
counter64 outUserFragments = 0
counter64 inMppdus = 1
counter64 inErroredMppdus
counter64 inUserFrames = 1
counter64 inUserOctets = 1518
counter64 inPadOctets = 2
counter64 inUserCompleteFragments = NA
counter64 inUserDroppedFragments = NA
counter64 inUserErroredFragments = NA

6/21/2021 IEEE 802.1 Security 15

MAC DA MAC SA VLAN ET User Data
MPPDU

ET

MPPDU
Header ICV

1572 octets

MACsec
PrY

MAC
destination

PrY
MAC

source

1500 octets

VLAN FCS

1524 octets
1520 octets

1518 octets

counter64 inOctets = 1572
counter64 inUnicastPkts = 0
counter64 inBroadcastPkts = 0
counter64 inMulticastPkts = 1
counter32 inDiscards =NA
counter32 inErrors = NA
counter32 inUnknownProtos = NA
counter64 outOctets = 1572
counter64 outUnicastPkts = 0
counter64 outBroadcastPkts = 0
counter64 outMulticastPkts = 1
counter32 outDiscards = NA
counter32 outErrors = NA

1520

MPPCI

MAC Pry Stats IETF Interface Stats

Efficiency MACsec & MAC PrY & MACsec

6/21/2021 IEEE 802.1 Security 16

Frame
MPPDU

ET ICV

1572 octets

MACsec
PrY

MAC
destination

PrY
MAC

source
VLAN FCS

1524 octets
1520 octets

ET User Data
ICV

6 + 6 + 4 + 38 + 2 + User data = (MAX ~ 1556)

MACsecMAC
destination MAC

source

Variable octets

VLAN FCS

Frame Frag

Overhead = 1 Frame 1572 – User data
52 + 18 + (2 MPPCI Padding + Other Padding)

Overhead = 2 Frames 1572 – (User data1 + User data2)
52 + 18 + 18 + (4 MPPCI counted as Padding + Other Padding)

Overhead is 56 Octets Per User data (38 MACsec 18 Ethernet)

Overhead = 3 Frames 1572 – (User data1 + User data2 + User data3)
52 + 18+ 18+18 + (10 MPPCI counted as Padding + Other Padding)

Frame = 18 + User Data MAC PrY & MACsec

MACsec

62 2

Padding Statistics
• For most traffic mixes MAC PrY has no more overhead/per user data than MACsec alone, but it has

padding.
• It can have less overhead for small frames if MPPDUs are filled

• Padding counts as sent/octets received.
• Currently Pad is composed of:

• “Trailing PAD” Zero Octets added to an MPPDU
• “Explicit PAD” Zero Octets
• MPPCI octets of any Component frame of fragment (Including PAD)

• A similar project for IPSec counts all pad packets and all pad octets separate from padding added to a
frame.

• To do something similar, need to consider padOctets into padOctets (mppdus with some user data) and
allPadMppdusOctets pure Padded MPPDUs.

• Explicit pad and Trailing pad would not be differentiated. An all pad MPPDU could have either or both.

6/21/2021 IEEE 802.1 Security 17

Received Stats & Padding

6/21/2021 IEEE 802.1 Security 18

outMppdus =
outUserFrames =
outUserOctets =
outPadOctets =
outUserFragments =
inMppdus = 250
inErroredMppdus = 0
inUserFrames = 215
inUserOctets = 170516
inPadOctets = 209484
inUserCompleteFragments = 131
inUserDroppedFragments = 0
inUserErroredFragments = 0

Interface stats
inOctets = 393000

What do we know?
• 250 MPPDUs
• 215 User frames
• 131 User Fragments (~ 2 fragments/frame ~65 frames fragmented)
• 170516 User Octets
• 209484 PAD Octets
• 250 * 1520 = 170516 + 209484 = 380000
• 170516/379500 = 44.9 %
• 1518*250 = 379,500 = 100% (2 octets/frame overhead)
• 1572 * 250 = 393000
• No Errors.
How many MPPDUS carry no data?

Best guess between 137 to 35 = 172 /2 = 86 all PAD?

Finer Grain Padding Stats same example

6/21/2021 IEEE 802.1 Security 19

outMppdus =
outUserFrames =
outUserOctets =
outPadOctets =
outUserFragments =
outAllPadMppdus =
outAllPadOctets =
inMppdus = 250
inErroredMppdus
inUserFrames = 215
inUserOctets = 170516
inPadOctets = 209484
inUserCompleteFragments = 131
inUserDroppedFragments = 0
inUserErroredFragments = 0
inAllPadMppdus = 107
inAllPadOctets = 162640

Interfaces stats
inOctets = 393000

outMppdus =
outUserFrames =
outUserOctets =
outPadOctets = 2
outUserFragments =
inMppdus = 250
inErroredMppdus
inUserFrames = 215
inUserOctets = 170516
inPadOctets = 209484
inUserCompleteFragments = 131
inUserDroppedFragments = 0
inUserErroredFragments = 0

Interface stats
inOctets = 393000

Received 107 pure padding MPPDUs
107 * 1520 = 162640

Total MPPDUs * total Frame size
1572 * 250 = 393000

170516+46844/(250-107) = 1520

Given AllPadmppdus and UserDataSize
AllPadOctets can be computed.

250 -107 = 143 (Mppdus containing data)

There was actually 107 all Pad MPPDUs – does it matter? Agreed it does not matter.

Current State Machines Encode

6/21/2021 IEEE 802.1 Security 20

NEXT

EXPRESSFRAME
express = acceptNext();
encodeEncapsulatedFrame(express); express = Null;
outUserFrames++;

UCT: TX

UCT
express && !fitExpress && fragmentExpress

!express && expressNext && fitExpress

express && fitExpress

UCT

TX

encodeTrailingPad(); txMppdu(); outMppdus++; mppdu = NULL;

BEGIN || !mppdu

INITIALPFRAME

PFRAME

pframe = acceptNext();
encodeInitialFragment(pframe);
outUserFragments++;

pframe = acceptNext();
encodeEncapsulatedFrame(pframe);
outUserFrames++;

UCT: TX

UCT

INNERPFRAME

encodeInnerFragment(pframe);
outUserFragments++;

encodeFinalFragment(pframe); pframe = Null;
outUserFragments++; outUserFrames++;

FINALPFRAME

noExpress && pframe && !fitPframe && fragmentPframe

noExpress && !pframe && pframeNext && fitPframe

UCT: TX

else //none of the above

noExpress && pframe && fitPframe

encodeInnnerFragment(express);
outUserFragments++;

INNEREXPRESS

FINALEXPRESS

encodeFinalFragment(express); express = Null;
outUserFragments++; outUserFrames++;

INITIALEXPRESS

express = acceptNext();
encodeInitialFragment(express);
outUserFragments++;

!express &&
 expressNext && !fitExpress && fragmentExpress

UCT

UCT: TX

noExpress &&
!pframe && pframeNext && !fitPframe && fragmentPframe

mppdu : True iff (if and only if) an MPPDU has been generated and not yet transmitted.

express : True (not Null) iff the PrY is holding the remainder or all of an Express user data frame.

expressNext : True iff the PrY’s user has selected the next user data frame for transmission frame, that frame is available for transmission but has not yet

 been accepted by the PrY), and is an Express frame.

noExpress: True iff express and expressNext are both False.

pframe : True (not Null) iff the PrY is holding the remainder or all of a Preemptible user data frame.

pframeNext : True iff the PrY’s user has selected the next user data frame for transmission frame, that frame is available for transmission but has not yet

 been accepted by the PrY), and it is a Preemptible frame.

fitExpress : True iff the Express frame (or the whole of the remainder of the fragmented Express frame) can be encoded in the remaining MPPDU octets.
fragmentExpress : True iff the Express frame or its remainder can be fragmented, and the next fragment encoded in the remaining MPPDU octets.

fitPframe : True iff the Preemptable frame (or the whole of the remainder of the fragmented Preemptable frame) can be encoded in the remaining

 MPPDU octets.

fragmentPframe : True iff the Preemptable frame remainder can be fragmented, and the next fragment encoded in the remaining MPPDU octets.

State machine conditions:

express = acceptNext() : Accept the next user data frame (an Express frame) for transmission, similarly frame = acceptNext() for a Preemptible frame.

encodeEncapsulatedFrame(express), encodeEncapsulatedFrame(pframe) : Encode the user data frame in the MPPDU, and add the number of user data
octets encoded (not including the MPPCI) to outUserOctets.

encodeInitialFragment(express), encodeInitialFragment(pframe) : Encode an Initial Fragment, encapsulating the greatest multiple of 64 octets from the user
data frame that will fit in the MPPDU leaving at least 64 octets of the user data frame as a remainder, and add the number of user data frame octets
encoded (not including the MPPCI) to outUserOctets.

encodeInnerFragment(express), encodeInnerFragment(pframe) : Encode a Frame Fragment (with Initial and Final bits clear), encapsulating the greatest
multiple of 64 octets that will fit in the MPPDU leaving at least 64 octets of the frame as a remainder, and add the number of user data frame octets encoded
(not including the MPPCI) to outUserOctets.

encodeFinalFragment(express),encodeFinalFragment(pframe) : Encode the remainder of the user data frame in a Final Fragment.

encodeTrailing Pad() : Encode the value 0 in all the remaining octets (if any) of the MPPDU, add the number of pad octets to outPadOctets.

txMppdu() : Transmit the MPPDU through the PrY’s Controlled Port.

State machine procedures:

Decode State Machine Strict Priority

6/21/2021 IEEE 802.1 Security 21

controlledPortEnabled : Enabling contion.

empty : True iff the assemby has no pending fragments.
expressFragment : True iff the fragment has a fragment header and an express indication

preeemptFragment : True iff the fragment has an express indication false and a fragment header

initial : True iff the fragment is an initial fragment
final:True iff the fragment is a final fragment

inOrder:True iff all the current fragments are in order
seqNumber : the sequence number of the current fragment.

expected: True iff the sequence number received is the next expected sequence number
frame: True iff the MPPCI indicates a frame

mppdu: True iff the frame is an MAC Privacy PDU
Statistic update points are illustrated with inXxx where appropriate counters are adjusted

State machine conditions:BEGIN || (controlledPortEnabled && (mppdu))

For each MPPCI in MPPDU

NEW (MPPDU DECODE)

PRE_REASSEMBLY

initial && final && inOrder

rcvIndication(privatePort, frame); frame = PtrToNull;

DELIVER

expressReassembly

Next

(empty && initial) || seqNumber
== expected

EXP_REASSEMBLY

preemptReassembly

processFrame

Discard out of order Framents
inUserDroppedFragments++

!inOrder

initial && final && inOrder

(empty && initial) || seqNumber
== expected

!inOrder
!final

!final

inUserFrames++

inMppdus++

inUserFrames++
For each frag inUserFragments ++

PADDING

explicitPad ||
trailingPad

inUserFrames++
For each frag inUserFragments ++

UCT

6/21/2021 IEEE 802.1 Security 22

Comments?
Thank You

