
Adaptive PFC Headroom and PTP

Lily Lv (Huawei)

Background

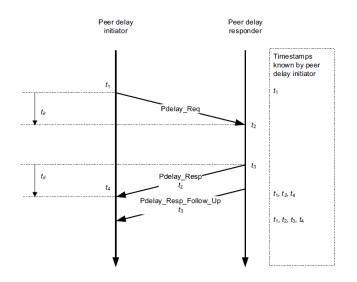
- Adaptive PFC headroom contribution proposes a new mechanism to automatically determine the amount of memory needed for PFC headroom.
 - https://www.ieee802.org/1/files/public/docs2021/new-lv-adaptive-pfc-headroom-0121-v02.pdf Adaptive PFC Headroom
 - https://www.ieee802.org/1/files/public/docs2021/new-congdon-a-pfc-h-Q-changes-0521-v01.pdf Consideration of Adaptive PFC Headroom in 802.1Q
 - The delay measurement procedure is similar to one-step PTP, but with different timestamps (taken above the MAC).

PFC Environment Assumptions

- PFC is mainly used in datacenter network.
- Datacenter network is a different environment from typical TSN environment.
 - Higher link speed, could be 100Gbps or above.
 - Higher speed is more sensitive to delay.
 - Inter-Datacenter links can be as long as tens of kilometers.
 - Longer link put more pressure on buffer size.
 - PTP is NOT common in the datacenter
 - The delay measurement must cover not only link delay, but also **internal processing delay** of stations (including interface delay and higher layer delay).
 - Internal processing delay can be larger than link delay
 - Internal processing delay is hundreds of nanoseconds level or above, depending on implementation.
 - 802.3 defines maximum values.

Sublayer	25GbE(ns)	100GbE(ns)		
RS, MAC and MAC control	327.68	245.76		
BASE-R PCS	143.36	353.28		
BASE-R PMA	163.84	92.16		

Q1: What is the measurement resolution requirement?


Time Accuracy Analysis of PFC Headroom Measurement

- The precision of (t4-t1) is the focus when analyzing time accuracy of PFC headroom measurement
 - What we don't care: Peer node clock frequency offset
 - What we care: Local clock frequency drift and timestamp granularity
- Local clock frequency drift impact analysis
 - Assume 5ppm oscillator, fiber cable 100Gbps and 10km link distance
 - (t4-t1) is no more than 200us: 100us link delay plus internal processing delay)
 - 1ns time offset in 200us
 - Headroom size mismatch is about 100 bits: 1ns*100Gbps=100bit, much less than buffer chunk size.
 - So buffer chunk size (e.g. 160 bytes) could easily accommodate the inaccuracy.
- Timestamp granularity impact analysis
 - (t4-t1) includes link delay and station internal processing delay. It is more than hundreds of nanoseconds.
 - When station has tens of nanoseconds timestamp granularity, it is good enough to support (t4-t1).

Q2: Can we leverage the existing timestamp points in 802.3 and measurement protocol in 802.1AS or IEEE1588?

Recap: Delay Measurement Mechanism in PTP and in 802.1AS

- PTP supports peer-to-peer delay link measurement
 - It has one-step and two-step mechanisms
 - One-step:
 - <meanLinkDelay> = [(t4 t1) correctedPdelayRespCorrectionField>]/2
 - correctedPdelayRespCorrectionField = t3-t2, does not support sub-ns
 - Two-step:
 - <meanLinkDelay> = [(t4 t1) (responseOriginTimestamp requestReceiptTimestamp) <correctedPdelayRespCorrectionField> correctionField of Pdelay Resp Follow Up]/2

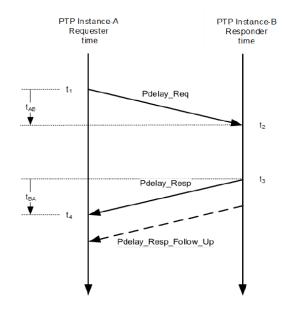


Figure 42—Peer-to-peer delay link measurement

- 802.1AS follows PTP to measure propagation delay
 - Considering accuracy(sub-ns) and implementation complexity(compatibility, hardware capability), it chooses two-step mechanism.
 - "The mechanism is the same as the peer-to-peer delay mechanism described in IEEE Std 1588-2019, specialized to a two-step PTP Port and sending the requestReceiptTimestamp and the responseOriginTimestamp separately [see 11.4.2 of IEEE Std 1588-2019, item (c)(8)]."

Recap: Delay Measurement Timestamp Point in PTP and in 802.1AS

1588 (PTP)

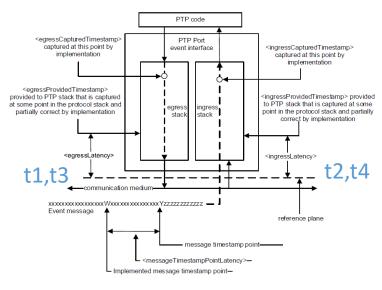


Figure 26—Definition of latency constants

ProvidedTimestamp = CapturedTimestamp +/- implementation-specific correction messageTimestamp = ProvidedTimestamp +/- egress/ingress Latency

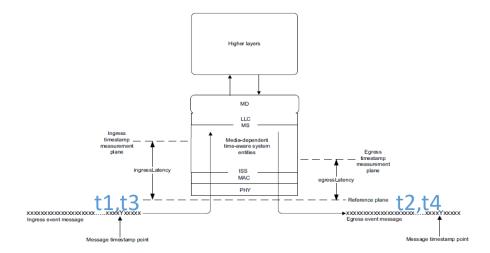
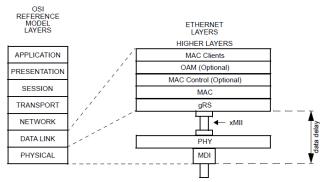


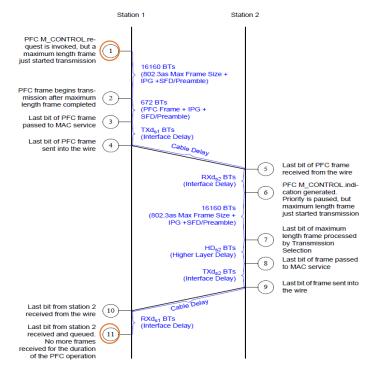
Figure 8-2—Definition of message timestamp point, reference plane, timestamp measurement plane, and latency constants

messageTimestamp = MeasuredTimestamp +/- egress/ingress Latency
"The timestamp measurement plane, and therefore the time offset of this plane from
the reference plane, is likely to be different for inbound and outbound event messages"

802.1AS

<u>802.3</u>




Figure 90-3-Data delay measurement

802.3 supports time sync by putting measurement timestamp point at xMII and providing PHY data delay(managed objects) as egress/ingress Latency.

- Message timestamp point is at reference plane. Correction is needed if implementation captured timestamp point is not message timestamp point.
- Reference plane is between PTP instant and network. For 802.1AS, it is between PHY and medium.
- t1~t4 have same reference plane.

Timestamp Point Analysis of PFC Headroom Measurement

- The delay includes time interval between point ① to point ①, not only cable delay, but also internal processing delay
 - Delay Value = 2*(Cable Delay) + TXds1 + RXds2 + HDs2 + TXds2 + RXds1 + 2*(Max Frame) + (PFC Frame) internal processing delay fixed value
- Cable delay can reuse IEEE1588 or 802.1AS, but how about internal processing delay?
 - 2*(cable delav) = t4 t1 (t3 t2)

Station 2 Queues High Laver PFC Delay(HD): the time selection selection needed for a queue M CONTROL M CONTROL EM DATA EM DATA 802.1 to go into paused 802.3 state after the MA_DATA MA_CONTROL MA_CONTROL MA_DATA reception of MACsec MACsec a PFC MAC Control MAC Control M CONTROL.indica Interface MAC MAC tion that paused its Delay(ID): the Reconciliation Reconciliation priority sum of MAC Control. XGXS XGXS MAC/RS, PCS, XGXS XGXS PMA, and PCS PCS PMD delays PHY PMA PMA PMD PMD Medium Medium Delay

Station 1

Figure N-3—Worst-case delay (802.1Q-2018)

Figure N-2—Delay model (802.1Q-2018)

PTP-Based PFC Headroom Measurement Proposal (1)

- Option 1: reuse PTP protocol but define separate mechanism to get peer node HD and ID
 - Reuse IEEE1588 or 802.1AS PTP protocol to measure cable delay
 - Pdelay_Resp/Pdelay_Resp_Follow_Up does not have reserved payload fields to carry more information
 - Develop new procedure and new message to request peer node HD and ID
 - Peer node directly fill HD, ID value in new defined response message without measurement.

Pros:

 Reuse IEEE1588 or 802.1AS delay measurement mechanism without any changes.

• Cons:

- Switches have common understanding of HD and ID.
 Additional procedure to get HD, ID.
- HD/ID value is not based on measurement, may introduce inaccuracy.

Figure N-2—Delay model (802.1Q-2018)

Table 48—Pdelay_Resp message fields

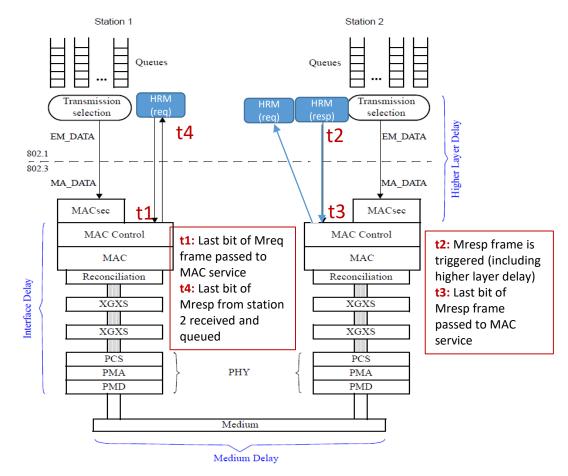
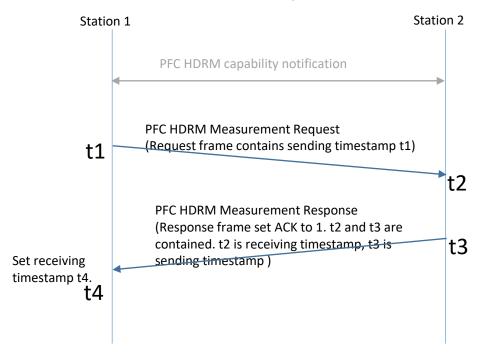
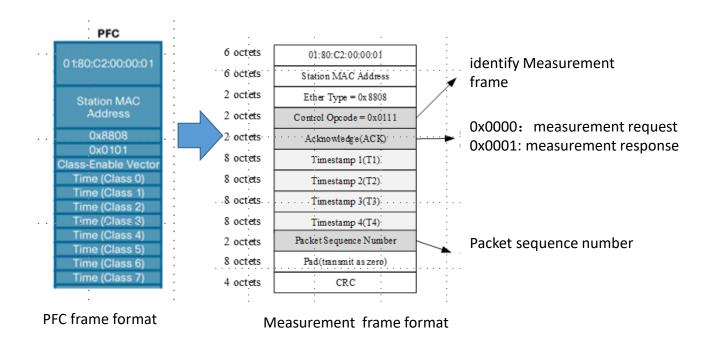

Bits						Octets	Offset		
7	6	5	4	3	2	1	0		
header (see 13.3)						34	0		
	requestReceiptTimestamp						10	34	
	requestingPortIdentity						10	44	

Table 49—Pdelay_Resp_Follow_Up message fields

Bits						Octets	Offset		
7	6	5	4	3	2	1	0		
header (see 13.3)							34	0	
responseOriginTimestamp						10	34		
	requestingPortIdentity						10	44	


PTP-Based PFC Headroom Measurement Proposal (2)


- Option 2: reuse PTP mechanism but change reference plane, including internal processing delay in the measurement
 - Neither of IEEE1588 and 802.1AS PTP reference plane can be used
 - IEEE1588 PTP reference plane is general, between PTP instant and network.
 - 802.1AS redefines PTP reference plane between PHY and medium.
 - PFC headroom measurement expects reference plane above MAC
 - t1~t4 are as shown in the figure. Reference plane is not the same for all timestamps.
 - (t3-t2) is the time to generate Mresp which should be exclude from PFC headroom delay.
 - Implementation-specific correction is needed to compensate captured timestamp and message timestamp
 - Message timestamp calculation is the same as 802.1AS, egress/ingress latency can be different for different timestamp point.
 - messageTimestamp = MeasuredTimestamp +/- egress/ingress Latency
- Pros:
 - Little changes to PTP delay measurement, but with measured HD/ID, more accurate for headroom calculation.
- Cons:
 - Need to redefine reference plane.

None-PTP-Based PFC Headroom Measurement Proposal

- Option 3: design MAC control frame as delay measurement message
 - Internal processing delay(ID) for MAC control frame and MAC data frame may have difference.
 - PFC frame is MAC control frame, while PTP delay measurement frame is MAC data frame.
 - Measurement mechanism and reference plane is the same as option2, but design MAC control frame as the interactive messages.
- Pros:
 - More like PFC delay procedure, can be more accurate
 - · Implementation friendly, do not change time sync module.
- Cons:
 - New design of message format
 - Need to redefine reference plane.

One-step or two-step in PFC Headroom Measurement Does Not Matter

- All 3 options does not care one-step or two-step mechanism for PFC headroom measurement.
 - Two-step is ok.
 - One-step could also be supported.
 - nanosecond level is accurate enough for headroom calculation
 - Implementation feasible
 - New function for PFC, no standard compatible issue as 802.1AS
 - Timestamp point does not need low level(PHY/MAC) support, so no stringent requirement on hardware

Summary

- PFC headroom measurement does not have issue on time sync accuracy.
- 3 ways proposed to standardize PFC headroom measurement
- All the 3 ways are technically feasible, could further compare pros and cons, and choose one when project starts.