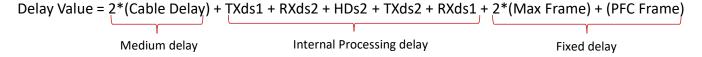
Adaptive PFC Headroom and PTP

Lily Lv (Huawei)

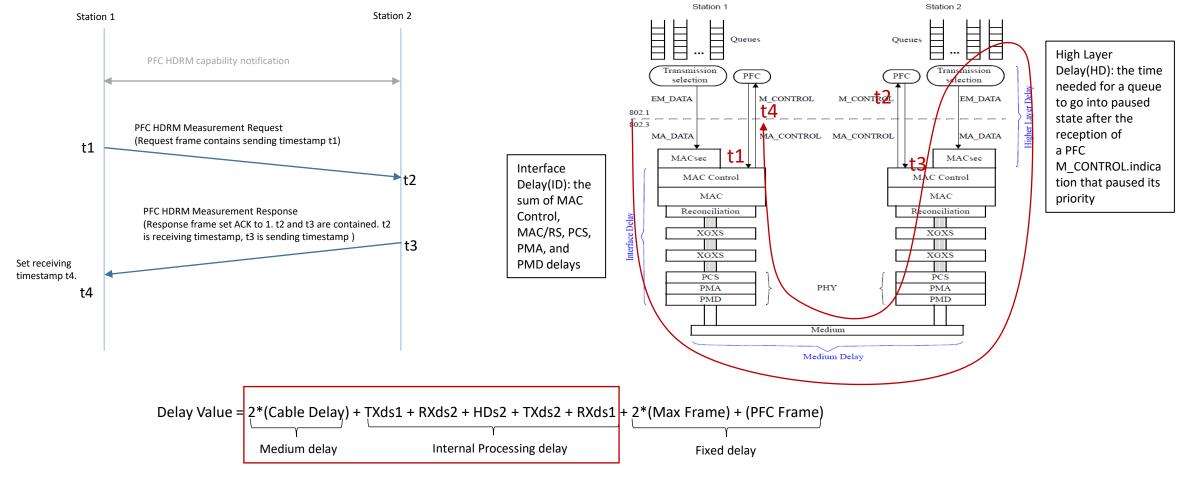
Agenda


- Background
- Response to feedback
 - What is the measurement resolution requirement?
 - Can we leverage the existing protocol in 802.1AS or IEEE1588?
- Next steps

Background

- Adaptive PFC headroom contribution proposes a new mechanism to automatically determine the amount of memory needed for PFC headroom.
 - https://www.ieee802.org/1/files/public/docs2021/new-lv-adaptive-pfc-headroom-0121-v02.pdf Adaptive PFC Headroom
 - https://www.ieee802.org/1/files/public/docs2021/new-congdon-a-pfc-h-Q-changes-0521-v01.pdf Consideration of Adaptive PFC Headroom in 802.1Q
- Motivation of adaptive PFC headroom: solve current PFC headroom configuration issue
 - Manual configuration is complex to customers
 - Vendor provided default value wastes buffer resource
 - It leads to limitation of number of queues which can enable PFC. Most commercial switches only support 2 PFC queues.
 - It has trouble in DCI scenario, as the link distance can be tens of kilometers.

Example of The Issue

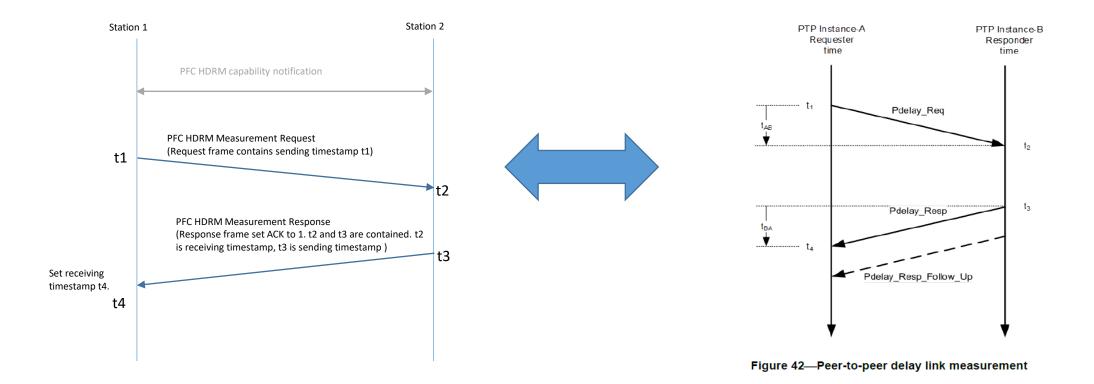

- Assumption:
 - 100Gbps
 - Default value is based on 500m and standard defined value (max value) as internal processing delay
 - Real link distance is 20m, actual internal processing delay is ¾ of the max value

		Fixed Delay	Internal Processing Delay	Medium Delay	Buffer size/queue	Queue number
Default Value	100G,500m	32992	203776	500000	92KB	2 queues
Real link distance	100G,20m	32992	203776	20000	32KB	5 queues
Real internal process delay	100G,20m	32992	203776*(3/4)=152832	20000	26KB	7 queues

Background

- Proposed mechanism of adaptive PFC headroom
 - The delay measurement procedure is similar to PTP, to measure roundtrip delay
 - The timestamp points are above MAC according to PFC delay model.
 - Internal processing delay(HD+ID) cannot be ignore, as it could be larger than link delay, hundreds of ns level or even higher depending on implementation

Q1: What is the measurement resolution requirement?


Time Accuracy Analysis of PFC Headroom Measurement

- The precision of (t4-t1) is the focus when analyzing time accuracy of PFC headroom measurement
 - What we don't care: Peer node clock frequency offset
 - What we care: Local clock frequency drift and timestamp resolution
- Local clock frequency drift impact analysis
 - Assume 5ppm oscillator, fiber cable 100Gbps and 10km link distance
 - (t4-t1) is no more than 200us: 100us link delay plus internal processing delay)
 - 1ns time offset in 200us
 - Headroom size mismatch is about 100 bits: 1ns*100Gbps=100bit, much less than buffer chunk size.
 - So buffer chunk size (e.g. 160 bytes) could easily accommodate the inaccuracy.
- Timestamp resolution impact analysis
 - (t4-t1) is the roundtrip delay, including link delay and station internal processing delay.
 - For 100Gbps, it is above micro-seconds. Range of timestamp resolution requirement is (tens of ns ~ hundreds of ns)
 - Assume 125MHz clock, timestamp resolution is 8ns

Q2: Can we leverage the existing protocol in 802.1AS or IEEE1588?

Reuse PTP Measurement Procedure

- PTP/802.1AS supports peer-to-peer delay link measurement
- The procedure can be reused in PFC headroom delay measurement

Redefine Timestamp Points

- PTP/802.1AS focus on cable delay, it defines reference plane for message timestamp points
 - t1~t4 have same reference planes.
 - Reference plane is between PHY and medium.
 - Correction is needed if implementation captured timestamp point is not message timestamp point.

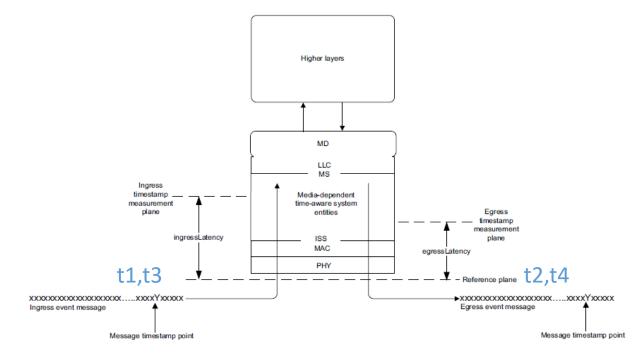
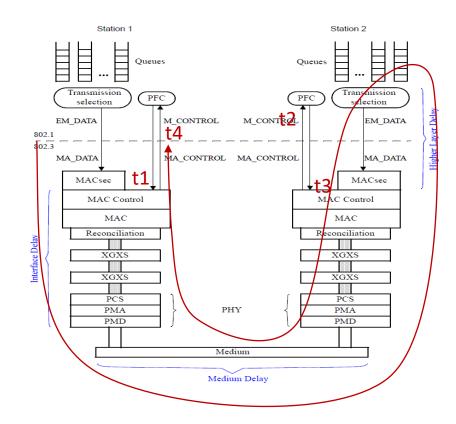
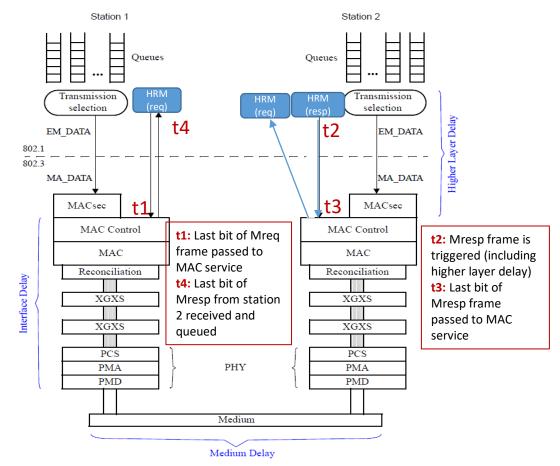



Figure 8-2—Definition of message timestamp point, reference plane, timestamp measurement plane, and latency constants

Redefine Timestamp Points

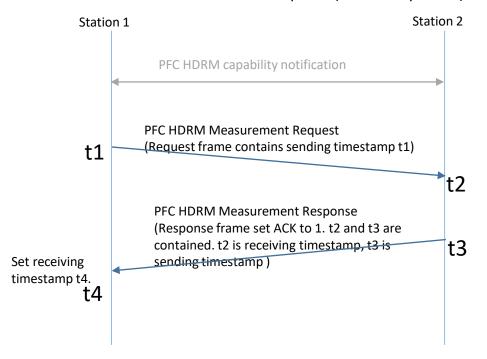
- PFC delay covers not only cable delay but also internal processing delay.
 - Message timestamp points are above MAC.
 - It is easier to capture timestamp points above MAC compared with those on PHY, less challenge on hardware.
- Refer to PTP/802.1AS, reference plane(s) for message timestamp points need to be redefined.
 - t1~t4 may have different reference planes.
 - Reference planes are above MAC
 - Correction is needed if implementation captured timestamp point is not message timestamp point.

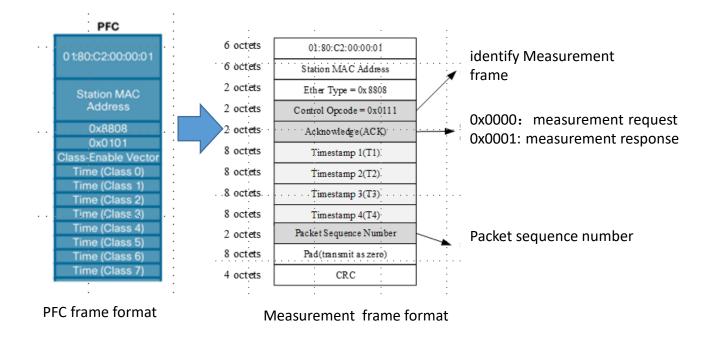
Proposals for Implementation(1/3)


- Option 1: reuse PTP measurement procedure as well as Pdelay message, but change reference plane
 - Reference planes are above MAC
 - t1~t4 are as shown in the figure. Reference plane is not the same for all timestamps.
 - (t3-t2) is the time to generate Mresp which should be exclude from PFC headroom delay.
 - Implementation-specific correction is needed to compensate captured timestamp and message timestamp

Pros:

- Small changes to PTP peer-to-peer delay measurement
- Measured delay value including internal processing delay is accurate for headroom calculation.


• Cons:


Need to redefine reference plane.

Proposals for Implementation(2/3)

- Option 2: based on option 1, but design MAC control frame as measurement message
 - Internal processing delay for MAC control frame and MAC data frame may have difference.
 - PFC frame is MAC control frame, and PTP delay measurement frame is MAC data frame.
 - Design new MAC control frame for measurement
- Pros:
 - More like PFC delay procedure, can be more accurate
 - Implementation friendly, do not impact time sync module.
- Cons:
 - New design of message format
 - Need to redefine reference plane (same as option 1)

Proposals for Implementation(3/3)

- Option 3: reuse PTP protocol but define separate mechanism to get peer node internal processing delay
 - Reuse PTP protocol to measure cable delay
 - Pdelay_Resp/Pdelay_Resp_Follow_Up does not have reserved payload fields to carry more information
 - Develop additional procedure to request peer node internal processing delay
 - Peer node directly fill internal processing delay value in response message without measurement.

Pros:

Reuse PTP delay measurement mechanism without any changes.

Cons:

- A separate procedure to get peer node internal processing delay.
- Internal processing delay is not based on measurement, may introduce inaccuracy.

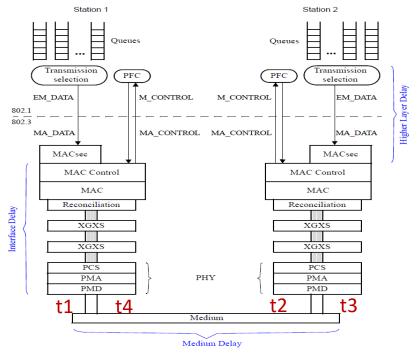


Figure N-2—Delay model (802.1Q-2018)

Table 48—Pdelay_Resp message fields

Bits								Octets	Offset
7	6	5	4	3	2	1	0		
header (see 13.3)								34	0
	requestReceiptTimestamp								34
			requesting	PortIdentity				10	44

Table 49—Pdelay_Resp_Follow_Up message fields

Bits								Octets	Offset
7	7 6 5 4 3 2 1 0								
header (see 13.3)								34	0
responseOriginTimestamp								10	34
			requestingl	PortIdentity				10	44

Summary & Next Steps

- Adaptive PFC headroom addresses the headroom configuration issue.
- PFC headroom measurement is technically feasible.
- 3 ways proposed to standardize PFC headroom measurement. Which one to choose could be further compared and decided when project starts.
- Next steps
 - Draft PAR & CSD to initiate a new project as amendment of 802.1Qbb(PFC)

Backup

PFC Environment Assumptions

- PFC is mainly used in datacenter network.
- Datacenter network is a different environment from typical TSN environment.
 - Higher link speed, could be 100Gbps or above.
 - Higher speed is more sensitive to delay.
 - Inter-Datacenter links can be as long as tens of kilometers.
 - Longer link put more pressure on buffer size.
 - PTP is NOT common in the datacenter
 - The delay measurement must cover not only link delay, but also **internal processing delay** of stations (including interface delay and higher layer delay).
 - Internal processing delay can be larger than link delay
 - Internal processing delay is hundreds of nanoseconds level or above, depending on implementation.
 - 802.3 defines maximum values.

Sublayer	25GbE(ns)	100GbE(ns)
RS, MAC and MAC control	327.68	245.76
BASE-R PCS	143.36	353.28
BASE-R PMA	163.84	92.16

		Fixed Delay	Internal Processing Delay	Medium Delay	Buffer size/queue	Queue number (5.8MB headroom)
Default Value	100G,500m	32992	203776	500000	92KB	32 ports * 2 queues	
Real link distance	100G,20m	32992	203776	20000	32KB	32 ports * 5 queues	
Real internal process delay	100G,20m	32992	203776*(3/4)=152832	20000	26KB	32 ports * 7 queues	
		Fixed Delay	Internal Processing Delay	Medium Delay	Buffer size/queue	Queue number (23.552MB headroo	om)
Default Value	100G,500m	32992	203776	500000	92KB	128 ports * 2 queues	
Real link distance	100G,20m	32992	203776	20000	32KB	128 ports * 5 queues	
Real internal process delay	100G,20m	32992	203776*(3/4)=152832	20000	26KB	128 ports * 7 queues	
		Fixed Delay	Internal Processing Delay	Medium Delay	Buffer size/queue	Queue number (5.28MB headroor	n)
Default Value	100G,200m	32992	203776	200000	55KB	48 ports * 2 queues	
Real link distance	100G,20m	32992	203776	20000	32KB	48 ports * 3 queues	
Real internal process delay	100G,20m	32992	203776*(3/4)=152832	20000	26KB	48 ports * 4 queues	
			Cable delay (bit t	times)		ID + HD (bit t	imes)
100G Base-R	10m		5000 (0.6KB)		100G Base-R	802.3 max value 132 608	
	10km 5 000 000 (625KB)			3)		Test value 100 000	
0.6KB for 10m estimation error (DCN case); 625KB for 10km estimation error (DCI case)					Default settings may increase actual needs by 33%		

PFC Delay Model

- PFC delay is RTT delay, from PFC pause frame is issued inside of station 1 until media drains.
- PFC delay consists of interface delay, medium delay and higher layer delay
 - Interface delay: the sum of MAC Control, MAC/RS, PCS, PMA, and PMD delays
 - Higher layer delay: the time needed for a queue to go into paused state after the reception of a PFC M_CONTROL.indication that paused its
 priority

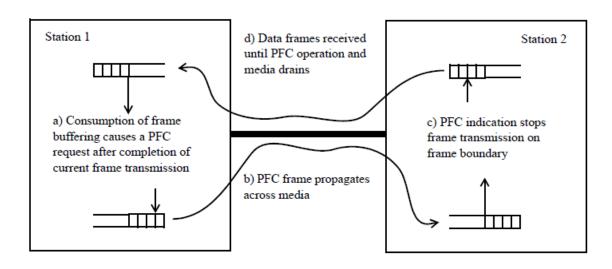
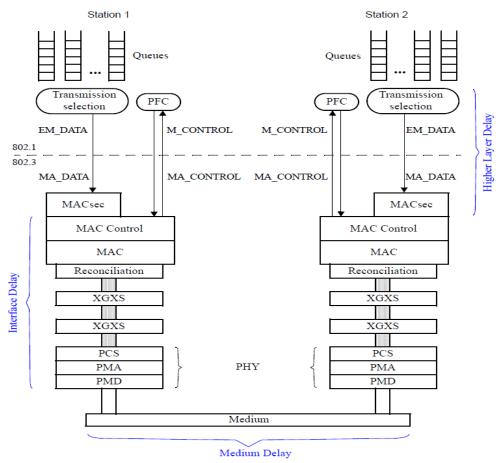
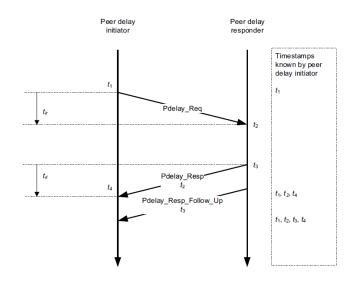




Figure N-1—PFC delays

Recap: Delay Measurement Mechanism in PTP and in 802.1AS

- PTP supports peer-to-peer delay link measurement
 - It has one-step and two-step mechanisms
 - One-step:
 - <meanLinkDelay> = [(t4 t1) correctedPdelayRespCorrectionField>]/2
 - correctedPdelayRespCorrectionField = t3-t2, does not support sub-ns
 - Two-step:
 - <meanLinkDelay> = [(t4 t1) (responseOriginTimestamp requestReceiptTimestamp) <correctedPdelayRespCorrectionField> correctionField of Pdelay Resp Follow Up]/2

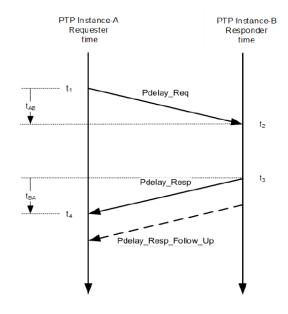


Figure 42—Peer-to-peer delay link measurement

- 802.1AS follows PTP to measure propagation delay
 - Considering accuracy(sub-ns) and implementation complexity(compatibility, hardware capability), it chooses two-step mechanism.
 - "The mechanism is the same as the peer-to-peer delay mechanism described in IEEE Std 1588-2019, specialized to a two-step PTP Port and sending the requestReceiptTimestamp and the responseOriginTimestamp separately [see 11.4.2 of IEEE Std 1588-2019, item (c)(8)]."

Recap: Delay Measurement Timestamp Point in PTP and in 802.1AS

1588 (PTP)

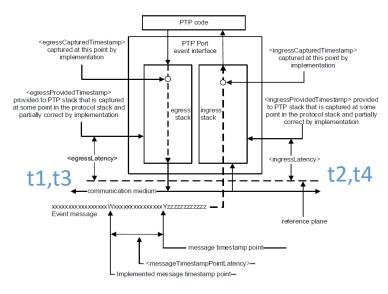


Figure 26—Definition of latency constants

ProvidedTimestamp = CapturedTimestamp +/- implementation-specific correction messageTimestamp = ProvidedTimestamp +/- egress/ingress Latency

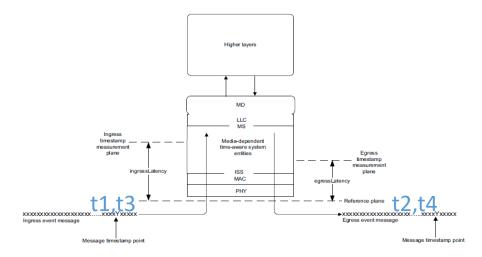
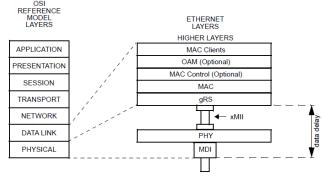


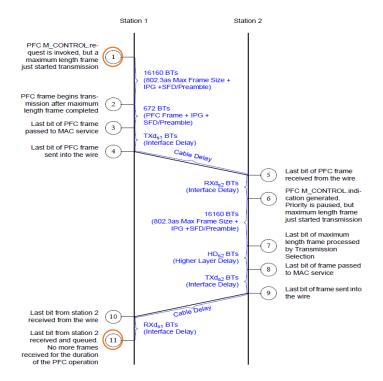
Figure 8-2—Definition of message timestamp point, reference plane, timestamp measurement plane, and latency constants

messageTimestamp = MeasuredTimestamp +/- egress/ingress Latency
"The timestamp measurement plane, and therefore the time offset of this plane from
the reference plane, is likely to be different for inbound and outbound event messages"

802.1AS

<u>802.3</u>




Figure 90-3-Data delay measurement

802.3 supports time sync by putting measurement timestamp point at xMII and providing PHY data delay(managed objects) as egress/ingress Latency.

- Message timestamp point is at reference plane. Correction is needed if implementation captured timestamp point is not message timestamp point.
- Reference plane is between PTP instant and network. For 802.1AS, it is between PHY and medium.
- t1~t4 have same reference plane.

Timestamp Point Analysis of PFC Headroom Measurement

- The delay includes time interval between point ① to point ①, not only cable delay, but also internal processing delay
 - Delay Value = 2*(Cable Delay) + TXds1 + RXds2 + HDs2 + TXds2 + RXds1 + 2*(Max Frame) + (PFC Frame)
 internal processing delay
 fixed value
- Cable delay can reuse IEEE1588 or 802.1AS, but how about internal processing delay?
 - 2*(cable delay) = t4 t1 (t3 t2)

High Laver PFC Delay(HD): the time selection selection needed for a queue M CONTROL M CONTROL EM DATA EM DATA 802.1 to go into paused 802.3 state after the MA_DATA MA_CONTROL MA_CONTROL MA_DATA reception of MACsec MACsec a PFC MAC Control MAC Control M CONTROL.indica Interface MAC MAC tion that paused its Delay(ID): the Reconciliation Reconciliation priority sum of MAC Control. XGXS XGXS MAC/RS, PCS, XGXS XGXS PMA, and PCS PCS PMD delays PHY PMA PMA PMD PMD Medium Medium Delay

Station 2

Station 1

Figure N-3—Worst-case delay (802.1Q-2018)

Figure N-2—Delay model (802.1Q-2018)

One-step or two-step in PFC Headroom Measurement Does Not Matter

- All 3 options does not care one-step or two-step mechanism for PFC headroom measurement.
 - Two-step is ok.
 - One-step could also be supported.
 - nanosecond level is accurate enough for headroom calculation
 - Implementation feasible
 - New function for PFC, no standard compatible issue as 802.1AS
 - Timestamp point does not need low level(PHY/MAC) support, so no stringent requirement on hardware