
On ATS

Johannes Specht (Self)

Introduction

Simple questions

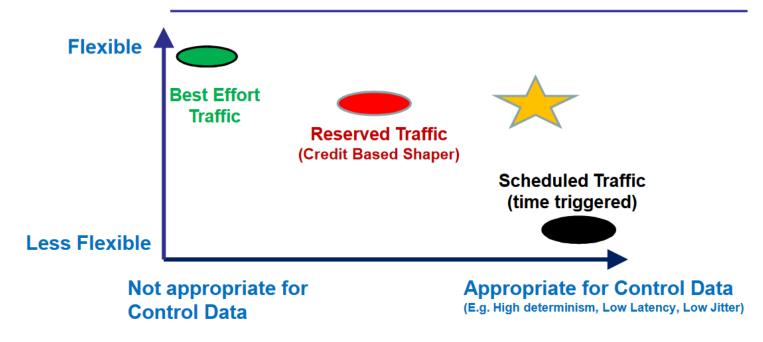
- What is the best TSN shaper?
- Is ATS or TAS better for me?
- ...

This Session

- Encourage discussion
 - Discussion ATS and other "TSN Shapers"
 - Discussion of aerospace use-cases
- → Please just ask questions, interrupt me/add yourself to the queue, etc.

This Slide Set

- Put ATS in context
- Properties of ATS/first thoughts on aerospace traffic
- ATS Math
- Explicit Pointers/References (in addition, look for "specht", "ubs", or "ats" in https://www.ieee802.org/1/files/public/docs2013 through https://www.ieee802.org/1/files/public/docs2021)


Giving Answers is tough

- What is your topology, in detail?
- What is your traffic, in detail?
 Path, pattern, quantitative and qualitative requirements of every stream!
- How dynamic is traffic and topology during runtime?
- How much planning and/or computation is ok?
- Do end station applications like the network timing?
- What is your Bridge failure model? They never fail, fail-silent only, or in a malicious manner?
- ...

ATS Context

Background & Motivation: UBS -> ATS

Flexible Control Traffic Class

➤ IEEE 802.1 TSN is currently working on proposals for additional traffic types with the desired properties: Flexible AND Appropriate for Control Data

➤ AAA₂C input on requirements / desired properties.

Markus Jochim, General Motors Research Johannes Specht, University of Duisburg-Essen IEEE 802.1 Plenary Session July 14 - 19, 2013 - Geneva, Switzerland

The Standardized "TSN Shapers" @ Zero Congestion Loss

→ No "one size fits all"

- Different shapers are optimized for different areas in a multi-dimensional problem space
- Performance Requirements, Reliability Requirements, Network Layout, etc.

Shaper Std. and usage	Bandwidth Efficiency Converged Traffic	Latency Bounds	Jitter Bounds	Global Clock Sync. Dependency	Configuration Complexity	Protection & Isolation Per-stream filtering and policing (802.1Qci-2017)
Credit-based Shaper (CBS) IEEE Std 802.1BA-2011/AVB w. MSRP	High	High	Loose	No	Low, Dynamic	Loose
Time-Aware Shaper (TAS) IEEE Std 802.1Qbv-2016 /TDM & Zero Interference/Sync. Apps	Low	Ultra Low	Ultra Tight	Yes	High, Static	Tight
Cyclic Queuing and Forwarding (CQF) IEEE Std 802.1Qch-2016	Low	Medium	Tight	Yes	Low, Dynamic	Loose
Asynchronous Traffic Shaping (ATS) IEEE Std 802.1Qcr-2020	High	Medium	Loose	No	Low, Dynamic	Tight
Strict Priority (SP) IEEE Std 802.1Q, static usage	• • •		Loose	No	High, Static	Loose
Strict Priority (SP) IEEE Std 802.1Q, with a priori bounds	Medium	Medium	Loose	No	Medium, Dynamic	Loose

Results of abstraction, individual experiences, systems/use-cases in mind, etc.:

Ask M people to insert values, get M different tables! Ask N people for the important columns, get N sets of columns!

Interpretations, conclusions, translations to numbers (e.g., "Medium" v. "Medium") are impossible without knowing all background details from the author!

The Standardized "TSN Shapers" @ Zero Congestion Loss

→ No "one size fits all"

• Different shapers are optimized for different areas in a multi-dimensional problem space

Performance Requirem Found in many, maybe all ts, Network Layout, etc.

Shaper Std. and usage	B "TSN Swite	ches" nds	Jitter Bounds	Global Clock Sync. Dependency	Configuration Complexity	Protection & Isolation Per-stream filtering and policing (802.1Qci- 2017)
Credit-based Shaper (CBS) IEEE Std 802.1BA-2011/AVB w. MSRP	High	High	Loose	No	Low, Dynamic	Loose
Time-Aware Shaper (TAS) IEEE Std 802.1Qbv-2016 /TDM & Zero Interference/Sync. Apps	·	Ultra Low ported, and PSF		Yes	High, Static	Tight
Cyclic Queuing and Forwarding (CQF) IEEE Std 802.1Qch-2016		plemented, CQF ipported.	ight	Yes	Low, Dynamic	Loose
Asynchronous Traffic Shaping (ATS) IEEE Std 802.1Qcr-2020	High Focus of	Medium this slide set	Loose	No	Low, Dynamic	Tight
Strict Priority (SP) IEEE Std 802.1Q, static usage	Medium Always	Medium	Loose	No	High, Static	Loose
Strict Priority (SP) IEEE Std 802.1Q, with a priori bounds	present	Medium	Loose	No	Medium, Dynamic	Loose

Results of abstraction, individual experiences, systems/use-cases in mind, etc.:

Ask M people to insert values, get M different tables! Ask N people for the important columns, get N sets of columns!
Interpretations, conclusions, translations to numbers (e.g., "Medium" v. "Medium") are impossible without knowing all background details from the author!

Upfront, first thoughts: ATS for Aerospace Traffic?

Traffic Types Documentation

Both su	pported
---------	---------

Irrelevant/per stream abstraction

NO => No significant delay penalty

End station perception

Supported

Supported

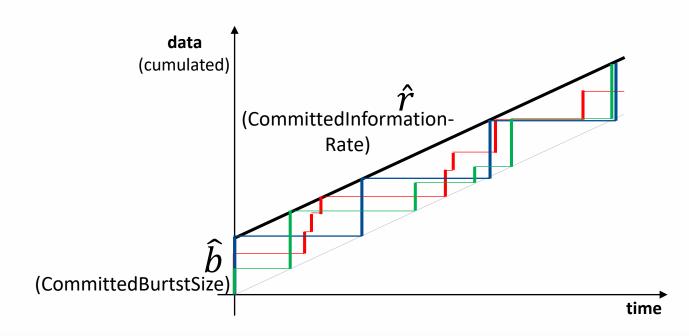
Numbers needed!

Designed for 0 loss in absence of errors on path

Supported

Characteristic	Description				
	Traffic types comprise data streams that can either be				
	Periodic: transmitted in a cyclic/periodic (e.g. signal transmission) or				
Periodicity	Aperiodic: transmitted in a acyclic/sporadic (e.g. event-driven) manner				
	Period denotes the planned data transmission interval (often also called "cycle") at the application layer.				
	#: Specify period for cyclic traffic				
Typical Period	N/A: for aperiod/acyclic traffic				
Application Synchronized to Network	Is the application producing traffic type synchronized to the network time at the application layer? YES or NO				
	Packet(s) are delivered to all receivers:				
		Deadline: before a specified time, relative to cycle time. (applies to periodic data)			
	Latency: within a predictable timespan from the start of the transmission				
	Bandwidth: if bandwidth utilization is within in the resources reserved by the sender				
Data Delivery Guarantee Mode	None: no special delivery requirements				
	#: Typical quantification of the data delivery guarantee for 80% of the use cases				
Delivery Guarantee Value	If "deadline" mode is used, specify if the data will be delivered in the same period or not				
	application's tolerance of a certain amount of latency variati	"AVB-Style", playout buffers, or			
	yes: application can tolerate jitter as specified (always yes f	Avb-style, playout bullers, or			
Application Tolerant to Jitter	no: highly sensitive application requires negligible jitter —	DPS*			
	#: Value of acceptable jitter for periodic applications	- · ·			
	NEG: Jitter must be negligible	(https://www.ieee802.org/1/files/public/docs2020			
Tolerable Jitter Value	N/A: if data delivery guarantee mode is "bandwidth" or "nor	/new-specht-dampers-fti-0620-v02.pdf)			
	Application's tolerance to a certain amount of consecutive p				
	Yes: app can tolerate loss due to recovery mechanism in upper layer protocols or basic redundancy				
Applications Tolerant to packet loss	No: app cannot tolerate a single packet loss				
	#: Num of consecutive packet loss tolerable to app.				
Tolerable packet loss Value	0: if application is not tolerant to packet loss				
	fixed: application payload size remain fixed				
Application payload size variability	variable: app payload varies from one packet to packet				
Payload Value (Bytes)	#: size/range of application data (payload) to be transmitted in the Ethernet frames.				
	Criticality of this data for operation of the critical parts of the system				
	high: highly critical for the operation. (DAL A, B)				
	medium: relevant but not continuously needed for the operation (Dal C, D)				
Data Criticality	low: not relevant for operation (DAL E)				

Source: https://www.ieee802.org/1/files/public/docs2021/dp-Jabbar-Aerospace-TrafficTypes-Summary-0521-v02.pdi


ATS Traffic Types/Streams

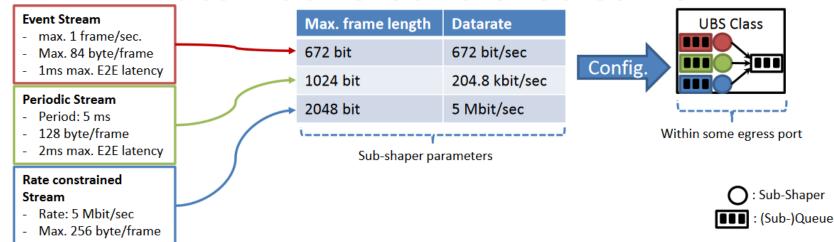
Token Bucket Traffic Model

Token Bucket Shaping in a Nutshell

- Buckets fills with tokens at Flow Rate
- Tokens consumed by Packet Length
- Delay, if not enough tokens

Traffic Types

Min. Designflow


- Per stream mapping to token bucket parameters (CommittedBurstSize & CommittedInformationRate)
- Delay analysis and network configuration

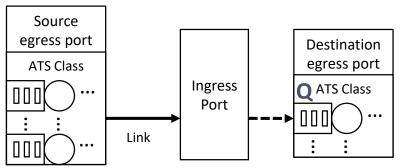
Aspect to *not* think too much about

- Synchronizing end station timing and network timing (which simply does not exist for ATS)
- Harmonizing periods within a converged network/ mixtures on the same wires

Sidenote: Compared to UBS@2014, ATS "Interleaving" simplifies queuing

Automotive Control Streams

Automotive Control Streams in UBS


- Automotive networks need to transport control stream (cmp. [FCTC]):
 - Periodic Control Streams
 - Event-based Control Streams
- Both are supported by UBS and treated as rate constrained streams, i.e. there is no differentiation between stream types.
- Streams transferred via UBS get automotive grade E2E latency guarantees (cmp [FCTC]) even without latency-requirement-to-priority mapping (i.e. use UBS unscheduled) and at 100MBit/s link speed (cmp. [UWC])

purce: https://www.ieee802.org/1/files/public/docs2014/new-tsn-specht-ubs-automotive-1114-v01

ATS Latency & Configuration

Per Hop Latency Math (Simplified)

Properties

- Closed expression per hop
- Sum along the path from talker to listener

Simplification (won't change the properties above)

- On this slide CommittedBurstSize = Max. packet length
- <u>Key paper</u>

 J. Specht and S. Samii, *Urgency-Based Scheduler for Time-Sensitive Switched Ethernet Networks*, ECRTS 2016
- Full Annex V of IEEE Std 802.1Qcr-2020

Term	Description
W_f^{max}	Max. per hop delay of a stream f
$\sum_{i \in H} l_i^{max}$	Sum of max. packet lengths of streams with a higher sub-priority than \boldsymbol{f}
$\sum_{i \in S} l_i^{max}$	Sum of max. packet lengths of streams with sub-priority equal to the sub-priority of \boldsymbol{f}
$\max_{i \in L} (l_i^{max})$	Maximum packet length of all streams with a lower sub-pririty than f, including lower priority traffic classes.
l_f^{max}	Maximum packet length of streams f.
R	Link speed.
$\sum_{i \in H} R_i$	Sum. of datarates of streams (i.e., CommittedBurstSize) with a higher subpriority than f.

Latency Bounds: Order of Magnitude

Satisfies the boundaries found in 802.1BA (AVB)

Sub Shapers — what has been shown (see also http://www.ieee802.org/1/files/public/docs2013/new-tsn-specht-ubs-perfchar-1113-v1.pdf)

- Bursts can't accumulate/propagate
- Latency can be calculated for each Hop independently
- Even without sub priorities, the end-to-end latency is low:

5612.2 µs 1432.32 µs (1 CBSA Shaper) (UBS Sub Shapers)

Underlying assumptions on Streams

- Max. Rate & max. Frame Length
- no further assumptions, e.g.
 - Talker transmission behavior
 - prev. Hops/topology

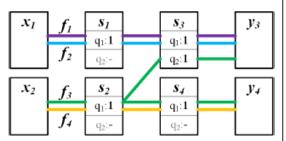
Further Cases

- Readers are encouraged to analyze UBS independently and present:
 - Counterexamples, other cases
 - Analyze whether the shown math, is totally wrong or totally right
 - etc.

Latency for 1 CBSA Shaper taken from http://www.ieee802.org/1/files/public/docs2010/ba-boiger-bridge-latency-calculations.pdf

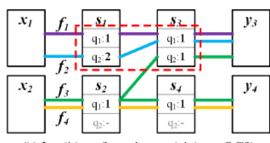
12/2/2013

Johannes Specht - University of Duisburg-Essen

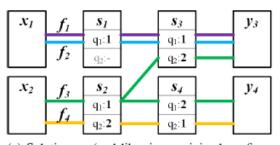


Configuration

There is a Range: How much computation/how optimized?

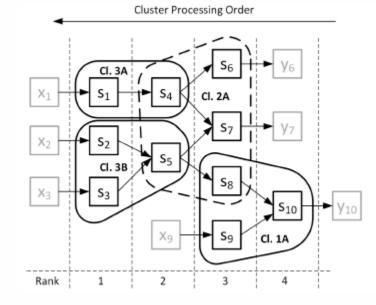

Simple (prev. Slides)

- Trivial latency calculation and setup
- All streams in one or more global traffic classes (aka priority level)
- "man-made" stream-to-class association
- Simple enough for distributed dynamic reservation without significant overprovisioning (e.g., P802.1Qdd)



(a) Single priority level configuration c_1 (valid) violating deadline constraint CC2.

Flow	Sink	$\bar{d}\left(f,y\right)$	$\hat{d}\left(c_{i},f,y\right)$			
			$c_i = c_1$	$c_i = c_2$	$c_i = c_3$	
f_1	y_3	6.5 µs	7 μs	6 µs	6.0 µs	
f_2	y_3	8.0 µs	7 μs	7.7 µs	6.0 µs	
f_3	y_3	9.5 µs	7 μs	7 μs	9.0 µs	
	y_4	$6.5\mu s$	6 µs	6 µs	5.7 µs	
f_4	y_4	6.5 µs	6 µs	6 µs	5.7 µs	


(b) Invalid configuration c_2 (violates QC2)

(c) Solution c₃ (and likewise a minimal configuration)

Complex

- Fine-tuning by assigning individual per stream per hop priority levels
- Optimize for matching tough/wide-spread per stream E2E latency requirements

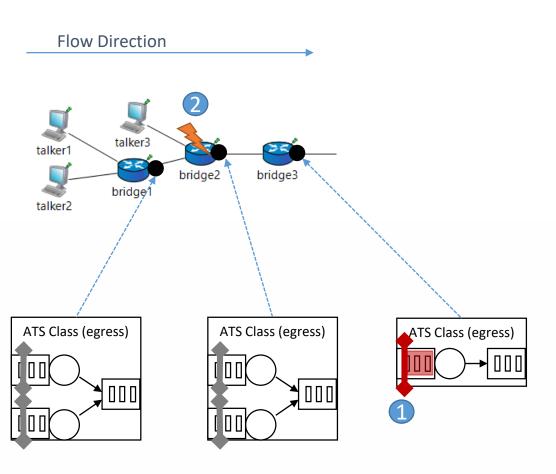
Source of all figures and tables on this slide: J. Specht and S. Samii, Synthesis of Queue and Priority Assignment for Asynchronous Traffic Shaping in Switched Ethernet, RTSS 2017

ATS Robustness

Robustness, Protection and Isolation

1. Asynchronous

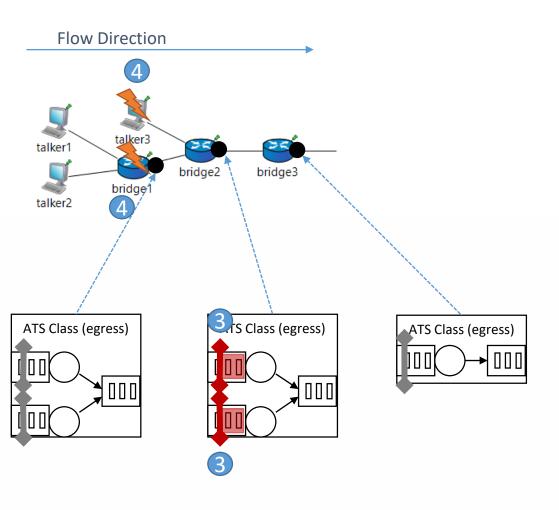
No global clock sync. dependency


2. Policing Included

- Token Bucket shaping
 - 1. Delaying (shaping), not only dropping (policing)
 - 2. Re-shaping per hop: No growing disturbance/burstiness along paths
 - → No need for increasing CommittedBurstSize values (avoid false-positive policing reactions)
 - → Low delay impact (no need to account for traffic form interfering babbling idiots maxing out increased CommittedBurstSize limits until policing reaction)
- Possible mutual exclusion
 - Token Bucket state machines (shapers & flow meter) share similarities
 - (Re-)shaped traffic may not need extra flow meters
 - ASIC Implementers may design for this

3. Traffic Isolation in (virtual) queues

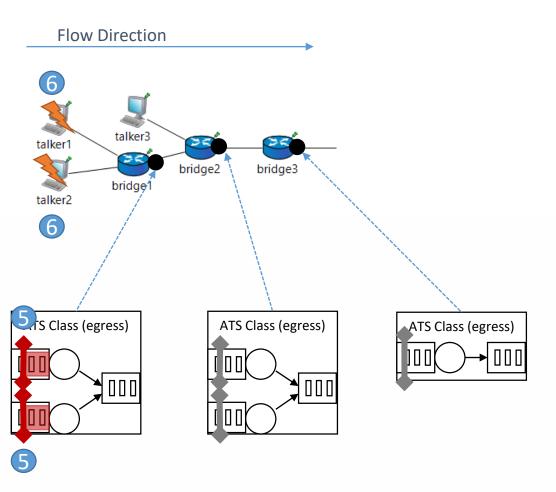
- At least at per Port resolution
- Mindset
 - Stations can break, not only in the nice way (i.e., become babbling idiots)
 - All traffic from a broken station is broken and lost (i.e., no separation in classes/streams)
 - Traffic on paths without broken boxes shall not be affected by interfering broken traffic


Separate (virtual) queuing at least on a per port resolution

Fault isolation Logic

- 1.If the queue limit in *bridge3* is exceeded...
- 2.... only *bridge2* can be the babbling idiot.

Separate (virtual) queuing at least on a per port resolution


Fault isolation Logic

- 1.If the queue limit in *bridge3* is exceeded...
- 2.... only *bridge2* can be the babbling idiot.

Contradiction

- 3.If the queue limit in *bridge3* is exceeded and *bridge1* or *talker3* would be the babbling idiot...
- 4.... limits in *bridge2* would prevent the overload to propagate to *bridge3*.

Separate (virtual) queuing at least on a per port resolution

Fault isolation Logic

1.If the queue limit in *bridge3* is exceeded...

2.... only *bridge2* can be the babbling idiot.

Contradiction

3.If the queue limit in *bridge3* is exceeded and *bridge1* or *talker3* would be the babbling idiot...

4.... queue limits in *bridge2* would prevent the overload to propagate to *bridge3*.

... Continuing ...

5.If a queue limit in *bridge2* is exceeded, *bridge1* would be fault free and *talker1* or *talker2* would be the babbling idiot...

6.... queue limits in *bridge1* would prevent the overload to propagate to *bridge2*.

Thank you for your Attention!

Time for Questions & Answers

Johannes Specht

Dipl.-Inform. (FH)

GERMANY

johannes.specht.standards@gmail.com