Small cycle impact in pulsed queues

Yizhou Li (Huawei)

Guanhua Zhuang (Huawei)

Li Dong (Shenyang Institute of Automation)

Wenbin Dai (Shanghai Jiao Tong University)

Introduction

 Pulsed Queues was presented in Nendica as a continuation of early discussions towards the PAR

(https://www.ieee802.org/1/files/public/docs2021/new-finn-pulsedqueuing-0821-v03.pdf)

- Suggested to use syntonization (frequency synchronization) instead of synchronization for CQF and its variance (CQF+).
- A measurement of phase offset is required to correctly match the cycles of two neighbor nodes.
- Goal of the slides
 - Potential impact in syntonized CQF/pulsed queues when the cycle time is small

Large receiving window time at the transmitter port may cause cycle identification ambiguity

- Assumptions:
 - per-hop latency variance between: Lmin & Lmax
 - Scheduled traffic takes full cycle time T
- Max receiving window time at the transmitter:

$$(T + L_{max}) - (0 + L_{min})$$

= T + (L_{max}- L_{min})

• # of receiving buffers to accommodate the max receiving window time:

floor((T + (L_{max}- L_{min}))/ T) + 2

- = floor((L_{max} L_{min}) / T) +3
- # of sending buffer = 1
- Total # of buffers = floor((L_{max}- L_{min}) / T) +4
- Special case: depending on B's phase offset relative to A, one buffer less may still work
- Example in left case:
 - ($L_{max}\text{-}$ L_{min}) is 1.6T
 - Total # of buffers: 5 (or 4 in special case)
 - If (L_{max}- L_{min}) is < T, total # of buffers = 4 (or 3 in special case)

When such ambiguity has significant negative impact

- Cycle time T is small, and
- Processing latency variance ($L_{\rm max}\text{-}~L_{\rm min}$) at node is large so that it is comparable to T

- Recall:
 - When (L_{max} L_{min}) << T, to eliminate the cycle ambiguity:
 - Make potential receiving window always fall in a single cycle:
 - increase the dead time (not allowing sending traffic) in a cycle to absorb the processing latency variance
 - Not full utilization of 100% of cycle time T currently due to dead time
 - Dead time contributor 1: Guard band at the beginning of T for the interruption from lower priority traffic
 - Dead time contributor 2: Dead time at the end of T to absorb the latency variance and cycle shifting between two neighbor nodes
 - When T is small, the dead time can eat T up. This is not desired.

Cycle time T can be small in the order of 10x us

- Rough factors to determine cycle time T
 - allow at least one 1500B/max size packet to be sent within T
 - preferably multiple packets can be sent within T
 - T < e2e bounded latency requirement / # of hops (roughly, not the exact number)
- Existing CQF usage scenario: T is no less than 100x us
 - Sufficiently good for streaming traffic as e2e bounded latency requirement is in the magnitude of few ms
- Some observations:
 - With increasing of link speed, the same amount of data can be transmitted within a smaller cycle time

Cycle Time (µs)	Buffer Size per Cycle (Byte)			
	Link bandwidth			
	100Mbps	1Gbps	10Gbps	
1	12.5	125	1250	
<mark>1.2</mark>	15	150	<mark>1500</mark>	
2	25	250	2500	
4	50	500	5000	
10	125	1250	12500	
<mark>12</mark>	150	<mark>1500</mark>	15000	
<mark>120</mark>	<mark>1500</mark>	15000	150000	

Cycle time decreasing: 100x us -> 10x us -> few us

- Smaller cycle makes CQF+ applicable to more strict e2e bounded latency requirement usage scenarios.
 - Application period requirement in industry automation [60802-d1-2]: 100 μs to 2 ms (isochronous), 500 μs to 1 ms (Cyclic-synchronous), 2 to 20 ms (Cyclic-Asynchronous), 100 ms to 1s as latency (Alarms and Events), 50 ms to 1 s (network control traffic), latency < 2ms (video), latency < 100ms (Audio/Voice)
- Cycle time in the order of magnitude of ~10x us would be desired

Processing latency variance at node is relatively large

• Store and forward time variance per packet

Bit_Rate	Store and forward latency (us)			
	Min frame size (64B)	Max frame size (1518B)	Latency variance	
100Mbps	64 *8 / 100Mbps ≈ 5 us	1518 *8 / 100Mbps ≈ 121 us	116 us	
1Gbps	0.5	12.1	11.6	
10Gbps	0.05	1.21	1.16	

- Switch Fabric Latency in incast case
 - For n port switch, latency variance = (n-1) * frame_size / bit_rate

Bit_Rate	Incast Latency variance (us)			
	16-port switch	24-port switch	32-port switch	
100Mbps	116 us *16 ≈1856 us	2784 us	3712 us	
1Gbps	185.6 us	278.4 us	371.2 us	
10Gbps	18.6 us	27.8 us	37.1 us	

 Processing latency variance is not negligible (or even larger) when cycle time T is ~10x us

Some Thoughts

- Cycle identification ambiguity is an issue when cycle T has to be small
- Consider the explicit cycle labeling to remove the ambiguity, especially when # of buffer >3
- Require the measurement of latency variance to estimate the potential receiving window time for a single cycle
 - # of buffers required
 - May need a guess at the very beginning for dry run
 - Adjust based on measurement to proper value
 - Monitor to check the violation of the assumed latency variance
 - Determine the cycle/buffer mapping relationship between neighbor nodes