Small cycle impact in pulsed queues

Yizhou Li (Huawei)
Guanhua Zhuang (Huawei)
Li Dong (Shenyang Institute of Automation)
Wenbin Dai (Shanghai Jiao Tong University)

Introduction

- Pulsed Queues was presented in Nendica as a continuation of early discussions towards the PAR
(https://www.ieee802.org/1/files/public/docs2021/new-finn-pulsed-queuing-0821-v03.pdf)
- Suggested to use syntonization (frequency synchronization) instead of synchronization for CQF and its variance (CQF+).
- A measurement of phase offset is required to correctly match the cycles of two neighbor nodes.
- Goal of the slides
- Potential impact in syntonized CQF/pulsed queues when the cycle time is small

Large receiving window time at the transmitter port may cause cycle identification ambiguity

[^0]- Assumptions:
- per-hop latency variance between: Lmin \& Lmax
- Scheduled traffic takes full cycle time T
- Max receiving window time at the transmitter:

$$
\begin{aligned}
& \left(T+L_{\max }\right)-\left(0+L_{\min }\right) \\
= & T+\left(L_{\max }-L_{\min }\right)
\end{aligned}
$$

- \# of receiving buffers to accommodate the max receiving window time:

$$
\text { floor }\left(\left(T+\left(L_{\max }-L_{\min }\right)\right) / T\right)+2
$$

$$
=\text { floor }\left(\left(L_{\max }-L_{\min }\right) / T\right)+3
$$

- \# of sending buffer = 1
- Total \# of buffers = floor $\left(\left(L_{\text {max }}-L_{\text {min }}\right) / T\right)+4$
- Special case: depending on B's phase offset relative to A, one buffer less may still work
- Example in left case:
- $\left(L_{\text {max }}-L_{\text {min }}\right)$ is 1.6 T
- Total \# of buffers: 5 (or 4 in special case)
- If ($L_{\text {max }}-L_{\text {min }}$) is $<T$, total \# of buffers $=4$ (or 3 in special case)

When such ambiguity has significant negative impact

- Cycle time T is small, and
- Processing latency variance ($\mathrm{L}_{\max }-\mathrm{L}_{\min }$) at node is large so that it is comparable to T
- Recall:
- When $\left(\mathrm{L}_{\text {max }}-\mathrm{L}_{\text {min }}\right) \ll \mathrm{T}$, to eliminate the cycle ambiguity:
- Make potential receiving window always fall in a single cycle:
- increase the dead time (not allowing sending traffic) in a cycle to absorb the processing latency variance
- Not full utilization of 100% of cycle time T currently due to dead time
- Dead time contributor 1: Guard band at the beginning of T for the interruption from lower priority traffic
- Dead time contributor 2: Dead time at the end of T to absorb the latency variance and cycle shifting between two neighbor nodes
- When T is small, the dead time can eat T up. This is not desired.

Cycle time T can be small in the order of 10x us

- Rough factors to determine cycle time T
- allow at least one $1500 \mathrm{~B} / \mathrm{max}$ size packet to be sent within T
- preferably multiple packets can be sent within T
- T < e2e bounded latency requirement / \# of hops (roughly, not the exact number)
- Existing CQF usage scenario: T is no less than 100 x us
- Sufficiently good for streaming traffic as e2e bounded latency requirement is in the magnitude of few ms
- Some observations:
- With increasing of link speed, the same amount of data can be transmitted within a smaller cycle time

Cycle Time ($\mu \mathrm{s}$)	Buffer Size per Cycle (Byte)		
	Link bandwidth		
	100Mbps	1Gbps	10Gbps
1	12.5	125	1250
1.2	15	150	1500
2	25	250	2500
4	50	500	5000
10	125	1250	12500
12	150	1500	15000
120	1500	15000	150000

Cycle time decreasing:
$100 x$ us $->10 x$ us -> few us

- Smaller cycle makes CQF+ applicable to more strict e2e bounded latency requirement usage scenarios.
- Application period requirement in industry automation [60802-d1-2]: $100 \mu \mathrm{~s}$ to 2 ms (isochronous), $500 \mu \mathrm{~s}$ to 1 ms (Cyclicsynchronous), 2 to 20 ms (Cyclic-Asynchronous), 100 ms to 1 s as latency (Alarms and Events), 50 ms to 1 s (network control traffic), latency < 2 ms (video), latency < 100ms (Audio/Voice)
- Cycle time in the order of magnitude of $\sim 10 x$ us would be desired

Processing latency variance at node is relatively large

- Store and forward time variance per packet

Bit_Rate	Store and forward latency (us)		
	Min frame size (64B)	Max frame size (1518B)	Latency variance
100 Mbps	$64 * 8 / 100 \mathrm{Mbps} \approx 5$ us	$1518 * 8 / 100 \mathrm{Mbps} \approx 121$ us	116 us
1 Gbps	0.5	12.1	11.6
10 Gbps	0.05	1.21	1.16

- Switch Fabric Latency in incast case
- For n port switch, latency variance $=(\mathrm{n}-1)$ * frame_size / bit_rate

Bit_Rate	Incast Latency variance (us)		
	$16-$ port switch	24 -port switch	32 -port switch
100 Mbps	116 us *16 $\approx 1856 \mathrm{us}$	2784 us	3712 us
1 Gbps	185.6 us	278.4 us	371.2 us
10 Gbps	18.6 us	27.8 us	37.1 us

- Processing latency variance is not negligible (or even larger) when cycle time \mathbf{T} is $\sim 10 x$ us

Some Thoughts

- Cycle identification ambiguity is an issue when cycle T has to be small
- Consider the explicit cycle labeling to remove the ambiguity, especially when \# of buffer >3
- Require the measurement of latency variance to estimate the potential receiving window time for a single cycle
- \# of buffers required
- May need a guess at the very beginning for dry run
- Adjust based on measurement to proper value
- Monitor to check the violation of the assumed latency variance
- Determine the cycle/buffer mapping relationship between neighbor nodes

[^0]: Special case: B's certain phase offset may require one buffer less

