intel

60802 Time Synchronisation – NRR Tracking & Error Compensation: 1-hop Model; Piece-wise Linear Clock Drift

David McCall (Intel)

References

 David McCall, "60802 Time Sync Ad Hoc mNRRsmoothing Optimisation Results", IEC/IEEE 60802 contribution, November 2022 <u>https://www.ieee802.org/1/files/public/docs2022/60802-McCall-Time-Sync-mNRRsmoothingN-Optimisation-Results-1122-v2.pdf</u>

Background

- IEC/IEEE 60802 has a stated requirement of 1us time accuracy over 64 hops (i.e. 65 devices) with a goal of 100 hops (i.e. 101 devices).
- One of the proposed techniques for achieving this goal is to track Clock Drift induced changes to Neighbor Rate Ratio and make adjustments to the NRR calculation to compensate for associated error.
- This presentation describes a potential algorithm for this technique, a Monte Carlo simulation that models it, the results of the simulation and suggested parameters for the algorithm. It also discusses some of the potential implications for the IEC/IEEE 60802 profile.
- As with the multi-hop simulation, preparing a contribution covering **all** the details (every equation, etc...) takes a lot of effort. The plan is to follow up with that at a later date.

Content

- Background
- Proposed Algorithm
- 1-hop Monte Carlo Simulation
- Headline Results from Simulation
- Additional Results
- Implications for the IEC/IEEE 60802 Profile

Background

IEEE 802.1 TSN / 60802

NRR Tracking & Error Compensation - 1-hop Model - Piece-wise Linear Clock Drift – January 2023

Only Concerned with NRR

Using Sync to measure NRR...

...which improves timing & consistency.

Method 3 is best for using older timestamps See [1] $t_{3(p-7)}$ $t_{3(p-6)}$ $t_{3(p-5)}$ $t_{3(p-4)}$ $t_{3(p-3)}$ $t_{3(p-2)}$ $t_{3(p-1)}$

Proposed Algorithm

IEEE 802.1 TSN / 60802

NRR Tracking & Error Compensation - 1-hop Model - Piece-wise Linear Clock Drift – January 2023

Approach Overview

- Assume linear Clock Drift
 - Good enough for short periods of time, unless...
 - ...there is a sudden change in drift (discontinuity) when the assumption of linearity & consequent "compensation" could make things worse, but...
 - ...even that's OK at a system level, provided this only happens at a low number of nodes at any one time (or a vast majority of nodes at exactly the same time).
- Take two measurements of NRR, separated in time
 - Construct measurements to limit impact of Timestamp error; only Clock Drift error remains.
 - Separate from measurement of NRR for use in Sync; different priorities for Clock Drift / Timestamp Error balance.
- Estimate NRR Drift
- Adjust t_{2out} timestamps (received from n-1 node), based on drift estimate, prior to mNRR calc for Sync
- Calculate mNRR for use in Sync and add to incoming RR field to calculate local RR.

1-hop Monte Carlo Simulation

mNRR Comp Measurements – Example

- N = 4, each initial calculation goes back 4 timestamps
- A = 4, each measurement is an average of previous 4 initial calculations
- P = 8, second measurement starts 8 timestamps further in the past than the first measurements

mNRR Comp Measurements – Errors

- N = 4, each initial calculation goes back 4 timestamps
- A = 4, each measurement is an average of previous 4 initial calculations
- P = 8, second measurement starts 8 timestamps further in the past than the first measurements

2-hop Simulation - Overview

Events	Sync RX	K-16 Sync I	RX-15 Sync	RX-14 Syno	RX-13 Sy	nc RX-12	Sync RX-11	Sync F	X-10 Sync	: RX-9 Syn	CRX-8 Sy	nc RX-7	Sync RX-	6 Sync	RX-5	Sync RX-4	Sync RX	-3 Sync	RX-2 Syn	: RX-1	Sync TX	
Timestamp Errors	16	1	5 1	4	13	12	11	10) (9	8	7	6	5	5	4	3	2	2	1		
Intervals		SI[16]	SI[15]	SI[14]	SI[13]	SI[1	2] SI	[11]	SI[10]	SI[9]	SI[8]	SI	[7]	SI[6]	SI[5]	SI	[4]	SI[3]	SI[2]	Res Tir	ne[1]	
Interval	S	yncinterval	SyncInterval	SyncInterva	I SyncInter	val Syncint	erval Synci	nterval	SyncInterval	SyncInterva	SyncInterv	al Syncir	iterval Syn	cinterval	SyncInte	rval Synch	nterval Syr	ncinterval	SyncInterva	Res T	ime	ms
TS	-(RT+SI[1	.:16]) -(RT+SI	[1:14]) -(RT+S	I[1:13]) -(RT+	SI[1:12]) -(R	T+SI[1:11]) -	(RT+SI[1:10]) -(RT+SI	[1:9]) -(RT+5	SI[1:8]) -(RT+	SI[1:7]) -(R1	Γ+SI[1:6])	-(RT+SI[1:5]) -(RT+S	I[1:4]) -	(RT+SI[1:3])	-(RT+SI[1:	2]) -(RT+:	SI[1]) -	RT		ms
TempCycle	-(RT+SI[1	.:16]) -(RT+SI	[1:14]) -(RT+S	I[1:13]) -(RT+	SI[1:12]) -(R	T+SI[1:11]) -	(RT+SI[1:10]) -(RT+SI	[1:9]) -(RT+9	SI[1:8]) -(RT+	SI[1:7]) -(RT	F+SI[1:6])	-(RT+SI[1:5	-(RT+S	I[1:4]) -	(RT+SI[1:3])	-(RT+SI[1:	2]) -(RT+	SI[1]) -	RT	Random	s
TempCycleN-1	-(RT+SI[1	.:16]) -(RT+SI	[1:14]) -(RT+S	I[1:13]) -(RT+	SI[1:12]) -(R	T+SI[1:11]) -	(RT+SI[1:10]) -(RT+SI	[1:9]) -(RT+9	SI[1:8]) -(RT+	SI[1:7]) -(R1	F+SI[1:6])	-(RT+SI[1:5]) -(RT+S	I[1:4]) -	(RT+SI[1:3])	-(RT+SI[1:	2]) -(RT+	SI[1]) -	RT	Random	s
- 1. (0.1)																						
IdriftN	_	Mid Point	Mid Point	Mid Point	Mid Poir	nt Mid P	oint Mid	Point	Mid Point	Mid Point	Mid Point	t Mid	Point M	id Point	Mid Po	int Mid	Point N	lid Point	Mid Point	Mid F	oint	S
TdriftN-1		Mid Point	Mid Point	Mid Point	Mid Poir	nt Mid P	oint Mid	Point	Mid Point	Mid Point	Mid Point	t Mid	Point M	id Point	Mid Po	int Mid	Point N	lid Point	Mid Point	Mid P	oint	S
DriftN		DriftN	DriftN	DriftN	DriftN	Drift	:N Dr	iftN	DriftN	DriftN	DriftN	Dri	ftN	DriftN	Drift	N Dr	iftN	DriftN	DriftN	Drif	tN	ppm/s
DriftN-1		DriftN-1	DriftN-1	DriftN-1	DriftN-1	L Drift!	V-1 Dri	ftN-1	DriftN-1	DriftN-1	DriftN-1	Drif	tN-1 D	riftN-1	DriftN	-1 Drif	tN-1 [DriftN-1	DriftN-1	Drift	N-1	ppm/s
										I.						I		1				
NRRdrift		NRRdrift	NRRdrift	NRRdrift	NRRdrif	t NRRd	rift NRI	Rdrift	NRRdrift	NRRdrift	NRRdrift	NRR	drift N	RRdrift	NRRdı	ift NRF	Rdrift N	IRRdrift	NRRdrift	NRR	lrift	ppm/s
(DriftN-1 - DriftN)																						
mNRRcdError	m	NRRcdError	mNRRcdError	mNRRcdErro	or mNRRcdEr	ror mNRRco	Error mNRF	cdError	mNRRcdError	mNRRcdErro	r mNRRcdErr	or mNRR	dError mNI	RcdError	mNRRcd	Error mNRR	cdError mN	RRcdError	mNRRcdErro	r mNRRc	dError	ppm
										1												
T2outTSerror	T2outTS	error T2outT	Serror T2out	TSerror T2ou	tTSerror T2c	outTSerror	2outTSerro	T2outT	Serror T2out	TSerror T2out	TSerror T2o	utTSerror	T2outTSerr	or T2outT	Serror T	2outTSerror	T2outTSer	ror T2outT	Serror T2out	TSerror		ns
T1inTSerror	T1inTSe	rror T1inT	Serror T1inT	Serror T1in	TSerror T1	inTSerror	T1inTSerror	T1inTS	error T1inT	Serror T1in	Serror T1i	nTSerror	T1inTSerro	or T1inTS	Serror ⁻	1inTSerror	T1inTSerr	or T1inTS	error T1in	Serror		ns
mNRRtsError	mNRRts	Error mNRRt	tsError mNRR	tsError mNR	RtsError mN	NRRtsError	mNRRtsError	mNRRt	sError mNRR	RtsError mNR	RtsError mN	RRtsError	mNRRtsErr	or mNRR	tsError n	NRRtsError	mNRRtsEr	ror mNRRt	sError mNRI	RtsError		ns

mNRR Error Algorithms

2-hop Simulation Overview

Headline Results

Configuration

- XO Temp Dift: Quarter Sinusoidal, 125s ramp; 30s hold
- 8ns Timestamp Granularity; ±4ns Dynamic Timestamp Error
- 125s Sync Interval; uniform distribution 120-130ms
- Residence Time: 10ms; mean 5ms; standard deviation 1.8ms; max 15ms
- mNRRsmoothingN: 4
- mNRRsmoothingA: 4

Clock Drift – ¼-Sinusoidal Temperature Ramp: 125s ↓

Inputs		
Temp Max	85	°C
Temp Min	-40	°C
Temp Ramp Period	125	s
Temp Hold	30	s

Temp R	ate of C	hange	Clock D	rift
MAX	1.57	°C/s	MAX	2.12 ppm/s
MIN	-1.57	°C/s	MIN	-1.35 ppm/s

Best Result (so far...)

mNRRcompN = 3 mNRRcompA = 3 mNRRcompP = 6

mNRR (for Sync)	mNRR	for Compe	nsation	Spreads								
Ν	Α	N	Α	Р	7σ	Min-Max	99%	98%	95%	90%			
4	4				3.81	2.94	1.8	1.8	1.21	0.836			
4	4	3	3	6	0.51	1.31	0.311	0.0876	0.0666	0.0541			
Percentage Change						-55%	-83%	-95%	-94%	-94%			

Additional Results

Varying N/A/P for Compensation Calculation

mNRR (1	for Sync)	mNRR	for Compe	nsation		Spreads						Percentage Improvement					
N	Α	N	Α	Р	7σ	Min-Max	99%	98%	95%	90%	7σ	Min-Max	99%	98%	95%	90%	
4	4				3.81	2.94	1.8	1.8	1.21	0.836							
4	4	1	1	2	1.85	1.48	0.677	0.612	0.516	0.433	-51%	-50%	-62%	-66%	-57%	-48%	
4	4	2	2	4	0.393	0.763	0.14	0.12	0.0979	0.0814	-90%	-74%	-92%	-93%	-92%	-90%	
4	4	3	3	6	0.51	1.31	0.311	0.0876	0.0666	0.0541	-87%	-55%	-83%	-95%	-94%	-94%	
4	4	4	4	8	0.705	1.91	0.554	0.111	0.075	0.0588	-81%	-35%	-69%	-94%	-94%	-93%	
4	4	5	5	10	0.876	2.2	0.762	0.227	0.096	0.075	-77%	-25%	-58%	-87%	-92%	-91%	
4	4	6	6	12	1.03	2.36	0.866	0.423	0.121	0.0945	-73%	-20%	-52%	-77%	-90%	-89%	
4	4	7	7	14	1.16	2.57	0.95	0.554	0.147	0.115	-70%	-13%	-47%	-69%	-88%	-86%	
4	4	8	8	16	1.28	2.62	1.02	0.7	0.175	0.135	-66%	-11%	-43%	-61%	-86%	-84%	
4	4	9	9	18	1.39	2.69	1.08	0.784	0.205	0.156	-64%	-9%	-40%	-56%	-83%	-81%	
4	4	10	10	20	1.48	2.75	1.15	0.848	0.236	0.177	-61%	-6%	-36%	-53%	-80%	-79%	

Clock Drift – ½-Sinusoidal Temperature Ramp: 125s ↓

Inputs		
Temp Max	85	°C
Temp Min	-40	°C
Temp Ramp Period	125	s
Temp Hold	30	s

Temp R	ate of C	hange	Clock D	rift
MAX	1.57	°C/s	MAX	0.76 ppm/s
MIN	-1.57	°C/s	MIN	-0.76 ppm/s

1/4-Sinusoidal vs 1/2-Sinusoidal

mNRR (for Sync) mNRR for Compensation					Spreads								
Ν	Α	N	Α	Р	Ramp	7σ	Min-Max	99%	98%	95%	90%		
4	4				1/2 SIN	3.27	1.39	1.12	1.12	0.919	0.764		
4	4	3	3	6	1/2 SIN	0.208	0.135	0.076	0.0687	0.0581	0.0489		
Percentage Change						-94%	-90%	-93%	-94%	-94%	-94%		
mNRR (for Sync)	mNRR	for Compe	nsation			Spreads						
N	Α	N	Α	Р	Ramp	7σ	Min-Max	99%	98%	95%	90%		
4	4	3	3	6	1⁄4 SIN	0.51	1.31	0.311	0.0876	0.0666	0.0541		
4	4	3	3	6	1/2 SIN	0.208	0.135	0.076	0.0687	0.0581	0.0489		
Percentage Change						-59%	-90%	-76%	-22%	-13%	-10%		

- ½-Sinusoidal slightly reduces error before compensation, but...
- Is **much** easier to track than ¼-Sinusoidal (no discontinuities to throw off the algorithm)

Implications

IEEE 802.1 TSN / 60802

NRR Tracking & Error Compensation - 1-hop Model - Piece-wise Linear Clock Drift – January 2023

Implications for 60802

- Algorithm (mostly) works well (according to this simulation)
- As expected, it doesn't work as well when there are sudden changes in NRR Drift
 - Effect can be limited via careful choice of N/A/P parameters
 - More complex algorithms (e.g. Kalman Filter) would help, but more complex to implement (and compensation needs to be finalised between Sync TX & Follow-Up TX...although tracking can be done after Sync RX)
- May need to specify not just steady-state performance but response time to change? ("Best" parameters imply 1.5s response time.)
- Not entirely clear how this will play out at a system level
 - Simple assumption of % effective may not be accurate...but is it too kind, or too harsh?
 - Could potentially analyse NRR drift vs % effective to keep 100-hop simulation executing quickly...or just suck it up and let simulator run for a few hours (or longer?)

Backup

IEEE 802.1 TSN / 60802

NRR Tracking & Error Compensation - 1-hop Model - Piece-wise Linear Clock Drift – January 2023

Base mNRR w/o Comp

ς. Probability Density <u>,</u> 0.5 0.0 -1 0 ppm

mNRR w/ Comp - N:1 A:1 P:2

mNRR w/ Comp - N:2 A:2 P:4

mNRR w/ Comp - N:3 A:3 P:6

mNRR w/ Comp - N:4 A:4 P:8

mNRR w/ Comp – N:5 A:5 P:10

mNRR w/ Comp – N:6 A:6 P:12

mNRR w/ Comp – N:7 A:7 P:14

mNRR w/ Comp – N:8 A:8 P:16

mNRR w/ Comp – N:9 A:9 P:18

mNRR w/ Comp – N:10 A:10 P:20

