
IEC/IEEE 60802 Contribution –
Time Sync Informative Annex
Version 05 – September 2023

David McCall (Intel Corporation)

1. Overview
This document describes how a network of compliant devices can achieve a time synchronisation

accuracy, at the application level, of ±1 μs, relative to the Clock Source at the Grandmaster, over 100

network hops. To achieve this, it allocates the overall error budget of 1 000 ns as described in Table

101.

Table 101: Time Synchronisation Error Budget

Network Aspect Error Type
Network-Level

Error Budget (ns)
Normative or Informative?

All PTP Instances
Constant Time Error 200

Normative
Dynamic Time Error 600

All PTP Links
Constant Time Error 200

Informative
Dynamic Time Error Negligible

A chain of 1 Grandmaster PTP Instance, 99 PTP Relay Instances and 1 PTP End Instance (100 network

hops) that all comply with the normative requirements of sections 6.2.2 and 6.2.3 will generate a

network-level Time Error at or below the Error Budget for All PTP Instances.

Section 2 describes the principles of operation this document assumes.

Section 3 provides additional information on specific normative requirements.

The principles of operation include the use of crystal oscillators (XOs) as opposed to more accurate,

stable and costly options such as temperature-compensated crystal oscillators (TCXOs).).

Section 4 describes a potential approach to testing the normative requirements. It is not a test

specification but rather a high-level overview one potential approach that might be adopted by a full

test specification.

The use of XOs means that some of the normative requirements are difficult or impossible to meet

without employing algorithms that track Neighbor Rate Ratio drift and Rate Ratio drift and compensate

for consequent errors in calculating Rate Ratio and Correction Field. .

Section 4 5 of this annex provides examples of algorithms that can be used for this purpose, and which

have been shown to enable compliance with the normative requirements.

Clock drift in neighboring PTP Instances that use XOs means Implementations implementations that

employ TCXOs or other more accurate, stable oscillators can still find some of the normative

requirements difficult or impossible to meet without employing algorithms to track and compensate for

errors due to clock drift in neighboring PTP Instances that use XOs.

There is no normative requirement to use the algorithms described in section 45; an implementation

can employ alternative algorithms provided the normative requirements are met. Section 4 5 describes

the potential risks of deploying a network whose instances employ a mix of different algorithms. It is

the responsibility of implementers to mitigate the risks and ensure alternative algorithms deliver the

network-level performance.

This document does not include normative requirements for PTP Links. Section 2.3 describes PTP Link

characteristics that influence achieving 1 μs time synchronisation accuracy. It includes some examples

using common PTP Link characteristics.

This document’s normative requirements regarding instance-level error generation are necessitated by

the need to ensure not just an overall level of dTE generation at each node, but also the performance of

drift tracking and error compensation algorithms and the amount of dTE generation due to timestamp

error verses clock drift. The algorithms are employed to mitigate errors due to clock drift, but cannot

mitigate timestamp errors. Section 5 describes an example approach to testing the normative

requirements. It is not a test specification nor the only viable approach.

2. Principles of Operation
Achieving ±1 μs time synchronisation accuracy across 100 network hops involves managing the

accumulation of errors in the Precise Origin Timestamp + Correction Field and the Rate Ratio as they are

passed, via Sync or Follow_Up messages, down the chain of PTP instances and are then used by the PTP

End Instance to keep its ClockTarget in line with the ClockSource at the Grandmaster PTP Instance. The

majority of significant errors can ultimately be traced back to one of three sources: timestamp error,

clock drift, or path delay asymmetry. The selection of PTP protocol parameters often involves trading

off one source of error against the other. This document requires specific PTP protocol configurations,

and assumes the use of mechanisms (algorithms), that reduce dTE due to timestamp error but would

also – without additional measures – increase dTE due to clock drift to the point where the latter

exceeds the allocated error budget. However, this document also assumes additional measures to

minimise some sources of dTE due to clock drift and mechanisms and to track and compensate for

errors from other sources to a sufficient degree that the error budget is not exceeded.

The specific protocol configurations and other measures, along with their intended effects, are

described in Table 102.

Table 102: Protocol configurations & other measures to achieve dTE budget

Configuration or Measure Description and Intended Effect(s)

Sync Interval 125 ms Effects:
1. Calibrate the balance between dTE from timestamp error vs error

due to clock drift. Larger intervals lead to less timestamp error
and more error due to clock drift.

2. Keep below acceptable limits the impact of errors in Rate Ratio
and Rate Ratio Drift estimation when keeping ClockTarget in line
with ClockSource between arrival of Sync messages. Larger
intervals increase the impact of any errors.

Drift_Tracking TLV -
syncEgressTimestamp

Effect:
Enables calculation of NRR using Sync message timestamps, which
eliminates error due to NRR clock drift that would otherwise occur
between calculation of NRR using Pdelay_Resp messages and use
during Sync message processing (i.e. calculation of Rate Ratio and
output Correction Field values)

NRR Smoothing Description:
Algorithm to use timestamps from multiple past Sync messages when
estimating NRR.
Effect:
Reduce the amount of error in the estimate of NRR due to timestamp
error while increasing the amount of error due to clock drift.

NRR Drift Tracking &
Compensation

Description:
Algorithm to use timestamps from multiple past Sync messages to
estimate NRR drift then apply compensation to correct for
consequent errors in NRR Smoothing calculation.
Effect:
Mitigate the effect of errors due to clock drift when calculating and
using the estimated NRR.

Drift_Tracking TLV –
rateRatioDrift

Description:
Carries estimate of Rate Ratio drift rate from one node to the next.
Effect:
Allows each node to estimate its own Rate Ratio drift rate by
combining the incoming Rate Ratio drift rate with the local estimate of
NRR drift rate.

RR Drift Compensation Description:
Algorithm that uses the estimate of RR drift rate to compensate for
that drift, adjusting the estimated RR over time according to the drift
rate.
Effect:
For PTP Relay Instances, minimises errors in the Correction Field
caused by Rate Ratio drift.
For PTP End Instances, a similar approach can reduce errors in keeping
ClockTarget in line with ClockSource between arrival of Sync
messages, but is outside the scope of this document.

Pdelay Interval Consistency Description:
This document requires tighter control of the interval between Pdelay
messages generated at the Grandmaster PTP Instance than the
defaults in IEEE 802.1AS-2020.
Effect:
This document requires the use of Sync messages to calculate NRR
(see above). However, when a sufficient number of Sync messages are
not available, for example on startup or after a reconfiguration,
Pdelay_Resp messages may be used instead. In such cases, errors due
to clock drift at Relay Instances have a tendency to cancel out. A clock
drift which generates a positive error in NRR measurement on receipt
of a Pdelay_Resp message generates a negative error in NRR

measurement at the next node. The degree of cancellation depends
on the consistency of the intervals over which NRR is measured at
neighboring nodes. Tighter control of the Pdelay Interval increases
the consistency of the measurement interval and thus decreases the
amount of error.

Mean Residence Time Description:
This document defines an mean Residence Time requirement, where
the averagewhich is significantly lower than the default maximum
Residence Time in IEEE 802.1AS-2020.
Effect:
The amount of error in the Correction Field at the PTP End Instance
due to clock drift is proportional to the cumulative meanLinkDelay
and residenceTime experienced by a Sync message during transit from
the Grandmaster PTP Instance to the PTP End Instance. Specifying a
lower mean residenceTime reduces this source of error.

2.1. Grandmaster PTP Instance Implementation
Depending on implementation, a Grandmaster PTP Instance can…

1. Contain a single oscillator used for both Local Clock and Clock Source,

2. Contain separate oscillators for Local Clock and Clock Source, or

3. Contain only an oscillator for Local Clock and accept an external input for Clock Source.

In some cases a Grandmaster PTP instance can support more than one mode of operation and transition

between them depending on changes in system network configuration (see Splitting, Joining and

Aligning Time Domains).

In the first case the rateRatio and rateRatioDrift fields transmitted by the Grandmaster PTP Instance will

be zero, reflecting the fact there is no difference between the Local Clock and Clock Source frequencies.

In the second and third cases there can be differences between the Local Clock and Clock Source

frequencies. Any differences will be reflected in the rateRatio and rateRatioDrift fields transmitted by

the Grandmaster PTP Instance. This means that Grandmaster PTP instances will track rateRatio over

time in order to calculate rateRatioDrift, similarly to PTP Relay Instances and PTP End Instances. The

exact implementation can vary.

2.2. Splitting, Joining and Aligning Time Domains
Modular machines or production cells can allow the splitting and combining of machines if this is

required by the production process. When separate, the ClockSources of two machines run separately,

each with its own time domain. If both ClockSources are traceable to the same PTP timescale, the

difference between the ClockSources may be relatively small. If traceable to different timescales,

especially if one or both are ARB timescales, there can be a very large difference between the

ClockSources.

When two machines are joined, the first machine’s time domain remains unaffected, and it can continue

operation without disruption. There are two typical approaches to how the second machine behaves.

In the first case, the second machine’s time domain either ceases to exist, with its PTP Instances

becoming part of the first machine’s time domain. In the second case, the second machine’s time

domain is gradually aligned with the first machine’s time domain such that control loop cycles are

coordinated.

2.2.1 Joining Machines with Single Time Domain
In the first case, where the second machine’s time domain ceases to exist, a discontinuity in timing for

the second machine’s PTP Instances can occur, as they switch to use the first machine’s Grandmaster.

Some implementations implement measures to limit such timing discontinuities, but these measures are

outside the scope of this document. Typically, in this case, the second machine is not operational while

it is joined to the first. It resumes operation once its PTP Instances have synchronised with the first

machine’s Grandmaster.

2.2.2 Joining Machines with Multiple Coordinated Time Domains
In the second case, where the second machine’s time domain is gradually aligned with the first

machine’s time domain, this typically requires both machines to be implementing the same control loop

cycle time. The goal is that, once coordinated, each control loop cycle of the first machine will be

aligned with the start of a control loop cycle of the second machine, even though the two machines

maintain separate time domains and there can be a large difference between their Clock Sources.

In this case, after being joined together, the first machine effectively drives the second machine’s Clock

Source faster or slower, during an alignment period, until coordination is achieved. During the

alignment period, this drive from the first machine can result in the second machines’s Clock Source

temporarily exceeding the usual normative requirement on range of fractional frequency offset relative

to the nominal frequency of ±50 ppm. The usual normative requirement on range of rate of change of

fractional frequency offset of ±1 ppm/s, applicable when split (i.e. independent) or coordinated (i.e.

joined and stable, after the alignment period), may also be temporarily exceeded. However, if the value

stays with the range ±1.5 ppm/s, the network-level performance of 1 μs time synchronisation accuracy

can be maintained. For this reason, this document specifies a separate normative requirement for

temporary, externally driven, rate of rate of change of fractional frequency offset.

Since the second machine experiences no time discontinuities and the network-level performance is

maintained the second machine can, if desired, continue operation during the alignment period.

Once coordinated, the first machine continues to drive the Clock Source of the second machine to

maintain coordination. In this stable, coordinated mode of operation the normal range of ±1 ppm/s is

not exceeded.

The mechanism by which the first machine drives the Clock Source of the second machine is out of

scope for this document.

2.2.3 Splitting Machines
In the first case, where the second machine’s time domain ceased to exist while joined to the first,

splitting machines means that the second machine must create it’s own time domain again. The second

machine’s Clock Source typically starts at the PTP Grandmaster Instance’s last, best estimate of the first

machine’s Clock Source. It can take some time to before the time synchronisation accuracy of all the

second machine’s PTP Instances relative to its Grandmaster can be relied upon. For this reason, the

second machine is typically not operational during the split. Hot Standby can be employed to mitigate

this transition time, but the details of how to do so are out of scope for this document.

In the second case, where the second machine maintains its time domain while joined to the first,

splitting machines means that the first machine ceases driving the second machine’s Clock Source to

maintain coordination of control loop cycle times. Without this drive, the two time domains can drift

relative to each other. Time synchronisation performance within the second machine is maintained

during the split and the second machine can, if desired, continue operation throughout the process.

2.3. PTP Link Characteristics
A vast majority of time synchronisation error due PTP link characteristics is cTE due to asymmetrical

path delay in one direction verses the other. The mechanism to measure path delay assumes the link is

symmetrical and cannot detect asymmetry, thus asymmetry causes an error. The potential maximum

asymmetry and thus error typically scales linearly with physical path length.

The error budget for cTE due to PTP link characteristics for an entire system network is 200 ns. In any

specific system network this budget can be allocated as required with some links allocated a higher

budget (typically longer length) than others.

A typical specified maximum length asymmetrydelay skew for Category 6 Ethernet cables is <TBC>,

which translates to a maximum path delay asymmetry of <TBD> 50 ns per 100 m. If such cables are

used, a maximum total cable length between Clock Source and Clock Target with 99 PTP Relay Instances

between them (i.e. 100 network hops) is <TBC>400m.

Depending It is possible for the delay skew in one section of cable to cancel all or part of a delay skew in

the opposite direction from prior section but, depending on how cables are manufactured and

deployed, it is feasible for the asymmetries delay skews of each every cable segment between a

Grandmaster PTP Instance and a PTP End Instance to be additive.

3. Notes on Normative Requirements

3.1. Oscillator Requirements
Clock drift at the Grandmaster PTP Instance causes greater dTE than the same amount of clock drift at a

PTP Relay Instance or the PTP End Instance. This document therefore requires tighter limits on

maximum fractional frequency offset for an oscillator at the Grandmaster PTP Instance than at other

instances.

This document does not place requirements on operational temperature range or other environmental

factors. The required oscillator behaviour is delivered for the operational conditions across which a

device claims it is compliant. These conditions typically include temperature range but can also include

rate of change of ambient temperature, supply voltage stability, amount of vibration and others.

3.2. Timestamp Granularity Error
Timestamp Granularity Error (TSGE) is the error in timestamping each incoming and outgoing message

due to the maximum timestamp resolution of which an implementation is capable. It is typically directly

related to an implementation’s clock rate. For example, a clock rate of 125 MHz typically results in a

maximum resolution of 8 ns while a clock rate of 500 MHz typically results in a maximum resolution of

2 ns.

Formatted: Font colour: Auto

It is assumed that TSGE varies between -4 ns and +4 ns with an average of 0 ns. Lower levels of TSGE are

better. Implementations where TSGE is higher will find some of the normative requirements difficult or

impossible to meet.

3.3. Dynamic Timestamp Error
Dynamic Timestamp Error (DTSE) is the, effectively random, error in timestamping each incoming and

outgoing event message due to an implementation’s inherent inaccuracies, excluding TSGE. It is

assumed to vary between a minimum of -6 ns and a maximum of +6 ns with an average of 0 ns. Lower

levesl of DTSE are better.

If an implementation timestamps an incoming or outgoing message at a point other than the PHY, any

variability in delay between that point and the PHY (PHY delay) will translate to DTSE. Some common

implementations were not designed to limit this variability. If care is not taken to avoid implementations

with high variability, the assumed DTSE range is easily exceeded. Such implementations will find some

of the normative requirements difficult or impossible to meet.

3.4. Grandmaster PTP Instance Error Generation Requirements
Table 12 sets normative requirements for error generation at a Grandmaster PTP Instance that ensure

the relevant fields in the Sync and Sync_Followup messages it transmits are sufficiently accurate to

deliver the network-level performance. Table 103 describes how the normative requirements align with

major sources of error.

Table 103: Protocol configurations & other measures to achieve dTE budget

 Normative Requirement Main Sources of Error

1 preciseOriginTimestamp + correctionField
vs
Direct measurement of Clock Source

Timestamp Error relative to Clock Source plus
accuracy measuring any internal delay
between generation of the
preciseOriginTimestamp and Sync messages
transmission.

2 rateRatio
vs
Direct measurement of Rate Ratio of Clock
Source vs Local Clock

Accuracy of internal mechanism to measure
Rate Ratio of Clock Source vs. Local Clock,
potentially including algorithms that track
RateRatioDrift and modify Rate Ratio
accordingly1

3 rateRatioDrift
vs
Direct measurement of Rate Ratio Drift of Clock
Source vs Local Clock

Accuracy of internal mechanism to measure
Rate Ratio Drift of Clock Source vs Local Clock1

4 syncEgressTimestamp
vs
Direct measurement of Local Clock

Timestamp Error relative to Local Clock

1 – Only applicable if Clock Source and Local Clock are not locked to the same frequency by the

implementation. If they are locked then rateRatio will be 0 ppm and rateRatioDrift will be 0 ppm/s.

Limits on error generation due to Clock Drift are defined via normative requirements in Table 9.

3.5. PTP Relay Instance
Table 13 sets normative requirements for error generation at a PTP Relay Instance that ensure the

relevant fields in the Sync and Sync_Followup messages it transmits as part of Sync processing are

sufficiently accurate to deliver the network-level time sync performance. The requirements includes the

ability to mitigate errors in rateRatio and rateRatio drift that would otherwise occur due to clock drift at

the current PTP Relay Instance, an adjacent PTP Relay Instance, or the Grandmaster PTP Instance. Table

104 describes how the normative requirements align with major sources of error.

Table 104: Protocol configurations & other measures to achieve dTE budget

 Normative Requirement Clock Drifts Main Sources of Error

1

preciseOriginTimestamp +
correctionField
vs
Direct measurement of Clock
Source at Grandmaster PTP
Instance

None

Timestamp Errors relative to Local Clock
when measuring Residence Time, i.e.
Sync message ingress and egress.

Errors in Rate Ratio used when
translating Residence Time measured in
terms of Local Clock to Residence time
in terms of Clock Source, although these
are typicaly orders of magnitude
smaller than those from Timestamp
Errors.

2

rateRatio
vs
Direct measurement of Rate
Ratio of Clock Source vs
Local Clock

None

Timestamp Error affecting
measurement of NRR when there is no
NRR Drift. The effect should be low.
This normative requirement is a
baseline for the next two requirements.

3 Clock Source (RR Drift)

Accuracy of measurement of NRR when
there is no NRR Drift (as above), and
calculation of rateRatio, including
algorithms for RR Drift tracking & error
compensation.

4

Clock Source and Local
Clock at previous PTP
Instance (RR Drift &
NRR drift)

Accuracy of measurement of NRR when
there is NRR Drift, including algorithms
for NRR Drift tracking & error
compensation, and calculation of
rateRatio, including algorithms for RR
Drift tracking & error compensation.

Combined with the previous normative
requirement this effectively requires a
level of performance regarding NRR
Drift tracking & error compensation,
whether the source of the NRR drift is
the Local Clock of the current PTP
Instance or the previous PTP Instance.

5

rateRatioDrift
vs
Direct measurement of Rate
Ratio Drift of Clock Source vs
Local Clock

None

Timestamp Error affecting
measurement of NRR Drift when there
is no NRR Drift. The effect should be
low. This normative requirement is a
baseline for the next two requirements.

6 Clock Source (RR Drift)

Accuracy of measurement of NRR Drift
when there is no NRR Drift (as above),
and calculation of rateRatioDrift,
including algorithms for RR Drift
tracking & error compensation.

7

Clock Source and Local
Clock at previous PTP
Instance (RR Drift &
NRR drift)

Accuracy of measurement of NRR Drift
when there is NRR Drift, including
algorithms for NRR Drift tracking &
error compensation, and calculation of
rateRatioDrift, including algorithms for
RR Drift tracking & error compensation.

Combined with the previous normative
requirement this effectively requires a
level of performance regarding NRR
Drift tracking & error compensation,
whether the source of the NRR drift is
the Local Clock of the current PTP
Instance or the previous PTP Instance.

8

syncEgressTimestamp
vs
Direct measurement of Local
Clock

None Timestamp Error relative to Local Clock

Limits on error generation due to Clock Drift are defined via normative requirements in Table 9.

3.6. PTP End Instance
Table 14 sets normative requirements for error generation at a PTP End Instance that ensure the

ClockTarget it generates from incoming Sync and Sync_Followup messages is sufficiently accurate to

deliver the network-level time sync performance. Table 105 describes how the normative requirements

align with major sources of error.

Table 103: Protocol configurations & other measures to achieve dTE budget

 Normative Requirement Clock Drifts Main Sources of Error

1
ClockTarget
vs
ClockSource

None

Timestamp Error affecting
measurement of NRR Drift when there
is no NRR Drift. The effect should be
low. This normative requirement is a
baseline for the next two requirements.

2 Clock Source (RR Drift)

Accuracy of measurement of NRR Drift
when there is no NRR Drift (as above),
and calculation of rateRatioDrift,
including algorithms for RR Drift
tracking & error compensation.

3

Clock Source and Local
Clock at previous PTP
Instance (RR Drift &
NRR drift)

Accuracy of measurement of NRR Drift

when there is NRR Drift, including

algorithms for NRR Drift tracking &

error compensation, and calculation of

rateRatioDrift, including algorithms for

RR Drift tracking & error compensation.

Combined with the previous normative
requirement this effectively requires a
level of performance regarding NRR
Drift tracking & error compensation,
whether the source of the NRR drift is
the Local Clock of the current PTP
Instance or the previous PTP Instance.

Limits on error generation due to Clock Drift are defined via normative requirements in Table 9.

4. Approach to Testing Normative Requirements
This document does not specify tests to ensure conformance with the normative requirements.

However, it is important that the normative requirements are, in principle, testable. This clause

describes, at a high level, approaches a test specification might take to testing conformance with some

of the normative requirements related to time synchronisation.

It is assumed that test equipment can precisely measure the output of the ClockSource (at a

Grandmaster PTP Instance), ClockTarget (at a PTP End Instance) and Local Clock (at any PTP Instance) to

ensure conformance with frequency offset and frequency offset drift requirements.

It is also assumed that test equipment can generate sequences of PTP messages with precise timing and

content (for testing PTP Relay Instances and PTP End Instances) and receive, log, and process sequences

of PTP messages with precise timing measurement, e.g. of message arrival.

4.1. Testing Grandmaster PTP Instance
Figure 100 illustrates an approach to testing the four normative requirements discussed in sub-clause

3.4.

Figure 100: Approach to Testing Normative Requirements for Grandmaster PTP Instance

The test equipment can calculate the time the Sync message is output at the DUT by subtracting the link

delay from the measured arrival time at the test equipment.

For test 1, the test equipment compares the value of the preciseOriginTimestamp + correctionField

against its measurement of the ClockSource.

For tests 2 and 3, the test equipment compares the values in the rateRatio and rateRatioDrift fields with

its calculation of the equivalent values based on its measurements of the ClockSource and Local Clock.

For test 4, the test equipment compares the value of the syncEgressTimestamp against its measurement

of the Local Clock.

4.2. Testing PTP Relay Instance
Figure 101 illustrates an approach to testing normative requirements 1, 2, 5 and 8 discussed in sub-

clause 3.5.

Figure 101: Approach to Testing Normative Requirements for PTP Relay Instance - 1

The test equipment can compare the DUT’s output Sync message to the expected result given the

measurement of the Local Clock and the timing of the input Sync message transmission and output Sync

message reception.

For these four tests, the Emulated ClockSource and Emulated Local Clock are stable and in sync. In

practice, both can be equal to the test equipment’s Very Accurate Clock. In the input Sync message,

rateRatio will be 0 ppm and rateRatioDrift will be 0 ppm/s. If the Local Clock of the PTP Relay Instance is

also stable, it will measure NRR of 0 ppm and NRR Drift of 0 ppm/s.

The test equipment can calculate the time the output Sync message is output at the DUT by subtracting

the link delay from the measured arrival time at the test equipment.

For test 1, the test equipment can compare the increase in the value of the correctionField to the

measured meanLinkDelay (from the test equipment to the DUT) plus residenceTime. The test

equipment will need to account for the additional delay between the PTP Relay Instance’s transmission

of the input Sync message and its reception by the test equipment.

For tests 2 and 5, the test equipment can compare the rateRatio and rateRatioDrift fields in the output

Sync message with the equivalent calculated values between the measured Local Clock and the

Emulated ClockSource.

For test 8, the test equipment can compare syncEgressTimestamp value in the ouput Sync message with

its measurement of the Local Clock.

Figure 102 illustrates an approach to testing normative requirements 3 and 6 discussed in sub-clause

3.5.

Figure 102: Approach to Testing Normative Requirements for PTP Relay Instance - 2

For these two tests, the fractional frequency offset of the Emulated ClockSource is increasing at a

defined ppm/s rate relative to the Very Accurate Clock. The Emulated Local Clock is stable; in practice, it

can be equal to the test equipment’s Very Accurate Clock. In the output Sync message, the rateRatio

field will increase over time, and the rateRatioDrift field will maintain a matching positive value. If the

Local Clock of the PTP Relay Instance is also stable, it will measure NRR of 0 ppm and NRR Drift of 0

ppm/s.

For tests 3 and 6, the test equipment can compare the rateRatio and rateRatioDrift fields in the output

Sync message with the equivalent calculated values between the measured Local Clock and the

Emulated ClockSource.

Figure 102 illustrates an approach to testing normative requirements 4 and 7 discussed in sub-clause

3.5.

Figure 103: Approach to Testing Normative Requirements for PTP Relay Instance - 3

For these two tests, the fractional frequency offsets of the Emulated ClockSource and the Emulated

Local Clock are equal and increasing at a defined ppm/s rate relative to the Very Accurate Clock. In the

output Sync message, the rateRatio field will be 0 ppm, and the rateRatioDrift field will be 0 ppm/s. If

the Local Clock of the PTP Relay Instance is stable, the NRR it measures will increase over time and the

NRR Drift it measures will maintain a matching positive value.

For tests 4 and 7, the test equipment can compare the rateRatio and rateRatioDrift fields in the output

Sync message with the equivalent calculated values between the measured Local Clock and the

Emulated ClockSource.

4.3. Testing PTP End Instance
Figure 104 illustrates an approach to testing the three normative requirements discussed in sub-clause

3.6.

Figure 104: Approach to Testing Normative Requirements for PTP End Instance

The test equipment can compare its measurement of the DUT’s ClockTarget to the expected result given

the input Sync messages it generates. It will need to account for the additional delay between its

transmission of the input Sync message and the reception of the message by the DUT.

For test 1, the Emulated ClockSource and Emulated Local Clock are stable and in sync. In practice, both

can be equal to the test equipment’s Very Accurate Clock. In the input Sync message, rateRatio will be 0

ppm and rateRatioDrift will be 0 ppm/s. If the Local Clock of the PTP End Instance is also stable, it will

measure NRR of 0 ppm and NRR Drift of 0 ppm/s.

For test 2, the fractional frequency offset of the Emulated ClockSource is increasing at a defined ppm/s

rate relative to the Very Accurate Clock. The Emulated Local Clock is stable; in practice, it can be equal

to the test equipment’s Very Accurate Clock. In the output Sync message, the rateRatio field will

increase over time, and the rateRatioDrift field will maintain a matching positive value. If the Local Clock

of the PTP Relay Instance is also stable, it will measure NRR of 0 ppm and NRR Drift of 0 ppm/s.

For test 3, the fractional frequency offsets of the Emulated ClockSource and the Emulated Local Clock

are equal and increasing at a defined ppm/s rate relative to the Very Accurate Clock. In the output Sync

message, the rateRatio field will be 0 ppm, and the rateRatioDrift field will be 0 ppm/s. If the Local Clock

of the PTP Relay Instance is stable, the NRR it measures will increase over time and the NRR Drift it

measures will maintain a matching positive value.

5. Example Algorithms
This document does not place normative requirements on the use of specific algorithms. However, the

normative requirements assume the use of algorithms to reduce the effect of errors in meanLinkDelay

and to track clock drift and compensate for consequent errors. PTP instances that do not implement

algorithms will find it difficult or impossible to meet the normative requirements.

This clause provides examples of algorithms that can be used for…

• Tracking NRR drift.

• Correcting for errors in measured NRR (mNRR) due to NRR drift.

• Calculating RR drift.

• Correcting for errors in measured RR (mRR) due to RR drift.

• Reducing the effect of errrors in meanLinkDelay

For measured NRR, measured RR, and meanLinkDelay, an option for how startup behaviour can be

handled is provided.

5.1. Algorithm for Tracking NRR Drift
NRR Drift Tracking and Error Correction is carried out for each network hop, i.e. at every node other

than the Grandmaster. It is based on pairs of timestamps with each pair associated with a Sync message

transmitted from the previous node (n-1) to the current node (n)

• ts1outP – Timestamp of the Sync message egress from the previous node (n-1), timestamped by

that node’s Local Clock. Unit: ns.

• ts2in – Timestamp of the Sync message ingress to the current node (n), timestamped by that

node’s Local Clock. Unit: ns.

All timestamps are affected by Timestamp Errors.

The algorithm uses information from the 32 most recent Sync messages. However, a node need only

keep track of the 9 most recent pairs of timestamps from the most recent (x) to the 9th most recent (x-8)

Sync message. The algorithm generates one measurement of NRR using the prior 2 s of Sync message

data (on average, based on a nominal Sync Interval of 125 ms), and a second measure based on the 2 s

of Sync message data prior to that. It then uses the difference in the two measurements over the

interval between the effective measurement points to calculate the NRR drift rate.

On arrival of a new timestamp pair (x), a node executes a NRR calculation…

𝑁𝑅𝑅𝑐𝑎𝑙𝑐(𝑥) = (
𝑡𝑠1𝑜𝑢𝑡𝑃(𝑥)−𝑡𝑠1𝑜𝑢𝑡𝑃(𝑥−8)

𝑡𝑠2𝑖𝑛(𝑥)−𝑡𝑠2𝑖𝑛(𝑥−8)
− 1) × 106 ppm

…with an associated effective measurement point…

𝑁𝑅𝑅𝑐𝑎𝑙𝑐𝑇(𝑥) =
𝑡𝑠2𝑖𝑛(𝑥)+𝑡𝑠2𝑖𝑛(𝑥−8)

2
 ns

A node keeps track of the 24 most recent NRR calculations and effective measurement points, from the

most recent (x) to the 24th most recent (x-23).

After of a new most-recent NNR calculation, a node calculates an NRR drift rate…

𝑁𝑅𝑅𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐴 = ∑
𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐(𝑖)

8
𝑥
𝑖=𝑥−7 ppm

𝑁𝑅𝑅𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐵 = ∑
𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐(𝑖)

8
𝑥−16
𝑖=𝑥−23 ppm

𝑁𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = ∑
𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐𝑇(𝑖)

8
𝑥
𝑖=𝑥−7 − ∑

𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐𝑇(𝑖)

8
𝑥−16
𝑖=𝑥−23 ns

𝑁𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝑅𝑎𝑡𝑒(𝑛) = (
𝑁𝑅𝑅𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐴−𝑁𝑅𝑅𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐵

𝑁𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙
) × 109 ppm/s

…where NRRdriftRate(n) is the NRR drift rate for the current Node n.

5.2. Algorithm to Compensate for Errors in measured NRR due to Clock Drift
The algorithm to measure NRR uses data from the previous 1 s of Sync message data, combined with the

NRR drift estimate from the previous step. This smaller amount of data (vs. that used for either of the

NRR measurements in the previous step) is employed as it improves responsiveness to sudden changes

in NRR drift with minimal loss of accuracy.

On arrival of a new timestamp pair (x), a node executes a NRR calculation…

𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐(𝑥) = (
𝑡𝑠1𝑜𝑢𝑡𝑃(𝑥)−𝑡𝑠1𝑜𝑢𝑡𝑃(𝑥−4)

𝑡𝑠2𝑖𝑛(𝑥)−𝑡𝑠2𝑖𝑛(𝑥−4)
− 1) × 106 ppm

…with an associated effective measurement point…

𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐𝑇(𝑥) =
𝑡𝑠2𝑖𝑛(𝑥)+𝑡𝑠2𝑖𝑛(𝑥−4)

2
 ns

A node keeps track of the 4 most recent mNRR calculations and effective measurement points, from the

most recent (x) to the 4th most recent (x-3). (The mNRR calculations use information from the 5 most

recent Sync messages, but the node is already keeping track of information from the 9 most recent Sync

messages for the NRR drift tracking algorithm.)

The node then calculates an error-corrected measured NRR value.

𝐹𝑜𝑟 𝑖 = 𝑥 𝑡𝑜 (𝑥 − 3)

𝑚𝑁𝑅𝑅𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑(𝑖) = 𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐(𝑖) + (𝑚𝑁𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝑅𝑎𝑡𝑒(𝑛) ×
(𝑡𝑠2𝑖𝑛(𝑥)−𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐𝑇(𝑖))

109) ppm

𝑚𝑁𝑅𝑅𝑐 = ∑
𝑚𝑁𝑅𝑅𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑(𝑖)

4
𝑥
𝑖=𝑥−3 ppm

The result is a measured NRR value, error-corrected to the time when the most recent Sync message

was received.

5.2.1 Measured NRR Algorithm – Startup Behaviour
NRR is used when calculating meanLinkDelay and output Sync message fields. The first NRR drift

calculation will only be available after receipt of 32 Sync messages, i.e. after approximately 4 seconds of

operation given the 125 ms Sync Interval. During this time meanLinkDelay and output Sync messages

fields must still be calculated, so an alternative must be used, even if it can not deliver the same

assurances regarding network-level performance.

If measured NRR from Sync message information is unavailable but equivalent information from

Pdelay_Resp messages is available it may be substituted for Sync message information. However,

measuring NRR using Pdelay_Resp messages is vulnerable to additional error due to clock drift between

the time NRR is measured, on receipt of the latest Pdelay_Resp message, and use of the measurement

during Sync message processing. This is the reason using Sync message information is preferable. It also

means that a switch to using Sync message information as soon as possible is desirable. It is technically

possible to calculate a NRR using a combination of Pdelay_Resp and Sync messages but this can be risky

due to the potential for very short intervals between messages and resulting high error due to

timestamp errors, so it not recommended.

The following describes potential startup behaviour when using either Sync or Pdelay_Resp message

information. It is the responsibility of implementers to decide whether and when to use Pdelay_Resp

message information and when to switch to using Sync message information. It is, however, a

normative requirement that implementations use Sync message information when information from 32

or more timely Sync messages is available.

The following describes potential startup behaviour applicable to either Sync or Pdelay_Resp message

information.

At least two two messages must be received before calculating a NRR value.

Prior to two messages being received, NRR = 1 (i.e. 0 ppm) should be used.

Once two messages have been received, NRR should be calculated using the formula…

2nd message: 𝑚𝑁𝑅𝑅 = ((
𝑡3(𝑥)−𝑡3(𝑥−1)

𝑡4(𝑥)−𝑡4(𝑥−1)
) − 1) × 106 ppm

Where…

• 𝑡3 – Timestamp of the Pdelay_Resp message egress from the previous node (n-1), timestamped

by that node’s Local Clock. Unit: ns.

• 𝑡4 – Timestamp of the Pdelay_Resp message ingress to the current node (n), timestamped by

that node’s Local Clock. Unit: ns.

When three to four messages have been received, NRR should be calculated using the following

formulae…

3rd message: 𝑚𝑁𝑅𝑅 = ((
𝑡1𝑜𝑢𝑡𝑃(𝑥)−𝑡1𝑜𝑢𝑡𝑃(𝑥−2)

𝑡2𝑖𝑛(𝑥)−𝑡2𝑖𝑛(𝑥−2)
) − 1) × 106 ppm

4th message: 𝑚𝑁𝑅𝑅 = ((
𝑡1𝑜𝑢𝑡𝑃(𝑥)−𝑡1𝑜𝑢𝑡𝑃(𝑥−3)

𝑡2𝑖𝑛(𝑥)−𝑡2𝑖𝑛(𝑥−3)
) − 1) × 106 ppm

On arrival of the 5th Sync message the first mNRRcalc and mNRRcalcT calculations can take place and

should be used for NRR…

𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐(𝑥) = (
𝑡𝑠1𝑜𝑢𝑡𝑃(𝑥)−𝑡𝑠1𝑜𝑢𝑡𝑃(𝑥−4)

𝑡𝑠2𝑖𝑛(𝑥)−𝑡𝑠2𝑖𝑛(𝑥−4)
− 1) × 106 ppm

𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐𝑇(𝑥) =
𝑡𝑠2𝑖𝑛(𝑥)+𝑡𝑠2𝑖𝑛(𝑥−4)

2
 ns

5th Sync message: 𝑚𝑁𝑅𝑅 = 𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐(𝑥) ppm

As the 6th, 7th and 8th messages arrive an average can be taken and used for NRR, so…

6th message: 𝑚𝑁𝑅𝑅 = ∑
𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐(𝑖)

2
𝑥
𝑖=𝑥−1 ppm

7th message: 𝑚𝑁𝑅𝑅 = ∑
𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐(𝑖)

3
𝑥
𝑖=𝑥−2 ppm

8th message: 𝑚𝑁𝑅𝑅 = ∑
𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐(𝑖)

4
𝑥
𝑖=𝑥−3 ppm

For the 9th to the 31st message, the same equation as for the 8th message can be used.

Once the 32nd message arrives, the regular equations with NRR drift tracking and error correction can be

used.

5.3. Algorithm for Tracking RR Drift
A Sync or Sync_Followup message carries the rateRatio field, which informs each node of the previous

node’s estimate of its (the previous node’s) Rate Ratio. This document also requires support for the

Drift_Tracking TLV that carries the rateRatioDrift field, which informs each node of the previous node’s

estimate of its (the previous node’s) Rate Ratio Drift.

If the implementation of the Grandmaster PTP Instance means the ClockSource and Local Clock (at the

Grandmaster PTP Instance) are linked such that the two are always operating at the same frequency,

the rateRatio field received by the first node (Node 1) will always be 0 ppm and the rateRatioDrift field

will always be 0 ppm/s. Thus, at Node 1, RR will equal NRR, RR Drift will equal NRR Drift, and therefore

Clauses 5.1 and 5.2 describe how to calculate RR and RR Drift at Node 1.

If the implementation of the Grandmaster PTP Instance means the ClockSource and Local Clock (at the

Grandmaster PTP Instance) can operate at different frequencies, the implementation populates the

rateRatio and rateRatioDrift field with values reflecting those differences.

In either case all PTP Instances, other than the Grandmaster PTP Instance, calculate an estimate of the

local Rate Ratio Drift when the latest Sync Message is received, based on the received rateRatioDrift

field and the local measure of NRR Drift. The Rate Ratio Drift Rate from the previous node is in ppm/s

relative to the timebase of its Local Clock (i.e. the “s” in “ppm/s”). For highest precision, this cam be

converted to the timebase of the current node’s Local Clock.

𝑟𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜𝐷𝑟𝑖𝑓𝑡(𝑛) =
𝑟𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜𝐷𝑟𝑖𝑓𝑡(𝑛−1)

(1+
𝑚𝑁𝑅𝑅𝑐(𝑛)

106)
+ 𝑁𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝑅𝑎𝑡𝑒(𝑛) ppm/s

However, given that adding ppm/s already lacks the precision of multiplying actual ratios, this

simplification delivers similarly accurate results.

𝑟𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜𝐷𝑟𝑖𝑓𝑡(𝑛) = 𝑟𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜𝐷𝑟𝑖𝑓𝑡(𝑛 − 1) + 𝑁𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝑅𝑎𝑡𝑒(𝑛) ppm/s

5.4. Algorithm to Compensate for Errors in measured RR due to Clock Drift
On receipt of a Sync or Sync_Folloup message, all PTP Relay Instances estimate a measured RR (mRR)

based on the received rateRatio field and the local measure of NRR. An mRR value is used to translate

the sum of meanLinkDelay and residenceTime from Local Clock timebase into Grandmaster timebase.

An mRR value is also passed in the transmitted Sync or Sync_Followup message’s rateRatio field to the

next node. Errors in these estimates due to clock drift can be reduced by taking account of RR Drift.

Since the optimal point in time for each estimate is different, the amount of applicable RR Drift is

different, and hence the estimates will be different.

(For discussion of how different Grandmaster PTP Implementations affect the behaviour of a PTP Relay

Instance at Node 1 – or not – see Clause 5.3.)

A PTP End Instance is similar in that it estimates mRR on receipt of a Sync message, subsequently uses

an mRR value, and errors in the latter due to clock drift can be mitigated by taking account of RR Drift.

However, unlike a PTP Relay Instance, the mRR value is used to keep the ClockTarget in line with the

ClockSource and there is no need to transmit a rateRatio field to a subsequent node.

For a PTP Relay Instance there are three points in time of interest:

• Point A: Receipt of the Sync Message by the current node (Node n)

• Point B: Mid-point between transmission of the Sync message by the previous node (Node n-1)

and transmission of the consequent Sync message by the current node (Node n)

• Point C: Transmission of the Sync Message by the current node (Node n)

Figure 100 illustrates these points and the associated calculations.

Figure 104: RR Drift Tracking and Error Compensation Calculations

The estimate of RR when the Sync message arrives can be calculated as follows.

𝑚𝑅𝑅𝑎(𝑛) = 𝑟𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜(𝑛 − 1) + 𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝑛−1→𝑛((𝑛 − 1)𝑐 → 𝑛𝑎) + 𝑚𝑁𝑅𝑅𝑐𝑎(𝑛) ppm

 = 𝑟𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜(𝑛 − 1) + (
𝑟𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜𝐷𝑟𝑖𝑓𝑡(𝑛−1)

(1+
𝑚𝑁𝑅𝑅𝑐(𝑛)

106)
× 𝑚𝑒𝑎𝑛𝐿𝑖𝑛𝑘𝐷𝑒𝑙𝑎𝑦(𝑛)) + 𝑚𝑁𝑅𝑅𝑐(2) ppm

Where 𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝑛−1/𝑛((𝑛 − 1)𝑐 → 𝑛𝑎) is amount 𝑟𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜(𝑛 − 1) drifts between transmittion of the

Sync message at Node n-1 and reception at Node n. This is 𝑟𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜𝐷𝑟𝑖𝑓𝑡(𝑛 − 1) multipled by

meanLinkDelay but, since meanLinkDelay is measured in terms of Node n’s Local Clock and

rateRatioDrift is in terms of Node n-1’s Local Clock the latter should be divided by the NRR for the

highest accuracy.

However, given that adding ppm/s already lacks the precision of multiplying actual ratios, this

simplification delivers similarly accurate results.

𝑚𝑅𝑅𝑎(𝑛) = 𝑟𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜(𝑛 − 1) + (𝑟𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜𝐷𝑟𝑖𝑓𝑡(𝑛 − 1) × 𝑚𝑒𝑎𝑛𝐿𝑖𝑛𝑘𝐷𝑒𝑙𝑎𝑦(𝑛)) + 𝑚𝑁𝑅𝑅𝑐(2) ppm

Once the time Node n transmits the consequent Sync message is known, the correctionField value can

be calculated.

𝑚𝑅𝑅𝑏(𝑛) = 𝑚𝑅𝑅𝑎(𝑛) + 𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝑛(𝑎 → 𝑏) ppm

 = 𝑚𝑅𝑅𝑎(𝑛) + (𝑟𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜𝐷𝑟𝑖𝑓𝑡(𝑛) ×
𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒𝑇𝑖𝑚𝑒(𝑛)−𝑚𝑒𝑎𝑛𝐿𝑖𝑛𝑘𝐷𝑒𝑙𝑎𝑦(𝑛)

2
) ppm

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝐹𝑖𝑒𝑙𝑑(𝑛) = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝐹𝑖𝑒𝑙𝑑(𝑛 − 1) + (1 +
𝑚𝑅𝑅𝑏(𝑛)

106) × (𝑚𝑒𝑎𝑛𝐿𝑖𝑛𝑘𝐷𝑒𝑙𝑎𝑦(2) + 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒𝑇𝑖𝑚𝑒(2)) ns

And the rateRatio field.

𝑟𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜(𝑛) = 𝑚𝑅𝑅𝑎(𝑛) + 𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝑛(𝑎 → 𝑐) ppm

 = 𝑚𝑅𝑅𝑎(𝑛) + (𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝑅𝑎𝑡𝑒(𝑛) × 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒𝑇𝑖𝑚𝑒(𝑛)) ppm

5.4.1 Compensate for Errors in measured RR due to Clock Drift at PTP End Instance

5.5. Mean Link Delay Averaging

