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1. Overview 
This document describes how a network of compliant devices can achieve a time synchronisation 

accuracy, at the application level, of ±1 μs, relative to the Clock Source at the Grandmaster, over 100 

network hops.  To achieve this, it allocates the overall error budget of 1 000 ns as described in Table 

101. 

Table 101: Time Synchronisation Error Budget 

Network Aspect Error Type 
Network-Level 

Error Budget (ns) 
Normative or Informative? 

All PTP Instances 
Constant Time Error 200 

Normative 
Dynamic Time Error 600 

All PTP Links 
Constant Time Error 200 

Informative 
Dynamic Time Error Negligible  

 

A chain of 1 Grandmaster PTP Instance, 99 PTP Relay Instances and 1 PTP End Instance (100 network 

hops) that all comply with the normative requirements of sections 6.2.2 and 6.2.3 will generate a 

network-level Time Error at or below the Error Budget for All PTP Instances. 

Section 2 describes the principles of operation this document assumes. 

Section 3 provides additional information on specific normative requirements. 

The principles of operation include the use of crystal oscillators (XOs) as opposed to more accurate, 

stable and costly options such as temperature-compensated crystal oscillators (TCXOs).  ). 

Section 4 describes a potential approach to testing the normative requirements.  It is not a test 

specification but rather a high-level overview one potential approach that might be adopted by a full 

test specification. 

The use of XOs means that some of the normative requirements are difficult or impossible to meet 

without employing algorithms that track Neighbor Rate Ratio drift and Rate Ratio drift and compensate 

for consequent errors in calculating Rate Ratio and Correction Field.  . 

Section 4 5 of this annex provides examples of algorithms that can be used for this purpose, and which 

have been shown to enable compliance with the normative requirements. 

Clock drift in neighboring PTP Instances that use XOs means Implementations implementations that 

employ TCXOs or other more accurate, stable oscillators can still find some of the normative 



requirements difficult or impossible to meet without employing algorithms to track and compensate for 

errors due to clock drift in neighboring PTP Instances that use XOs. 

There is no normative requirement to use the algorithms described in section 45; an implementation 

can employ alternative algorithms provided the normative requirements are met. Section 4 5 describes 

the potential risks of deploying a network whose instances employ a mix of different algorithms.  It is 

the responsibility of implementers to mitigate the risks and ensure alternative algorithms deliver the 

network-level performance. 

This document does not include normative requirements for PTP Links. Section 2.3 describes PTP Link 

characteristics that influence achieving 1 μs time synchronisation accuracy.  It includes some examples 

using common PTP Link characteristics. 

This document’s normative requirements regarding instance-level error generation are necessitated by 

the need to ensure not just an overall level of dTE generation at each node, but also the performance of 

drift tracking and error compensation algorithms and the amount of dTE generation due to timestamp 

error verses clock drift. The algorithms are employed to mitigate errors due to clock drift, but cannot 

mitigate timestamp errors.  Section 5 describes an example approach to testing the normative 

requirements. It is not a test specification nor the only viable approach. 

2. Principles of Operation 
Achieving ±1 μs time synchronisation accuracy across 100 network hops involves managing the 

accumulation of errors in the Precise Origin Timestamp + Correction Field and the Rate Ratio as they are 

passed, via Sync or Follow_Up messages, down the chain of PTP instances and are then used by the PTP 

End Instance to keep its ClockTarget in line with the ClockSource at the Grandmaster PTP Instance.  The 

majority of significant errors can ultimately be traced back to one of three sources: timestamp error, 

clock drift, or path delay asymmetry.  The selection of PTP protocol parameters often involves trading 

off one source of error against the other.  This document requires specific PTP protocol configurations, 

and assumes the use of mechanisms (algorithms), that reduce dTE due to timestamp error but would 

also – without additional measures – increase dTE due to clock drift to the point where the latter 

exceeds the allocated error budget.  However, this document also assumes additional measures to 

minimise some sources of dTE due to clock drift and mechanisms and to track and compensate for 

errors from other sources to a sufficient degree that the error budget is not exceeded. 

The specific protocol configurations and other measures, along with their intended effects, are 

described in Table 102. 

Table 102: Protocol configurations & other measures to achieve dTE budget 

Configuration or Measure Description and Intended Effect(s) 

Sync Interval 125 ms Effects: 
1. Calibrate the balance between dTE from timestamp error vs error 

due to clock drift.  Larger intervals lead to less timestamp error 
and more error due to clock drift. 

2. Keep below acceptable limits the impact of errors in Rate Ratio 
and Rate Ratio Drift estimation when keeping ClockTarget in line 
with ClockSource between arrival of Sync messages.  Larger 
intervals increase the impact of any errors. 



  



Drift_Tracking TLV - 
syncEgressTimestamp 

Effect: 
Enables calculation of NRR using Sync message timestamps, which 
eliminates error due to NRR clock drift that would otherwise occur 
between calculation of NRR using Pdelay_Resp messages and use 
during Sync message processing (i.e. calculation of Rate Ratio and 
output Correction Field values) 

NRR Smoothing Description: 
Algorithm to use timestamps from multiple past Sync messages when 
estimating NRR. 
Effect: 
Reduce the amount of error in the estimate of NRR due to timestamp 
error while increasing the amount of error due to clock drift. 

NRR Drift Tracking & 
Compensation 

Description: 
Algorithm to use timestamps from multiple past Sync messages to 
estimate NRR drift then apply compensation to correct for 
consequent errors in NRR Smoothing calculation. 
Effect: 
Mitigate the effect of errors due to clock drift when calculating and 
using the estimated NRR. 

Drift_Tracking TLV – 
rateRatioDrift 

Description: 
Carries estimate of Rate Ratio drift rate from one node to the next. 
Effect: 
Allows each node to estimate its own Rate Ratio drift rate by 
combining the incoming Rate Ratio drift rate with the local estimate of 
NRR drift rate. 

RR Drift Compensation Description: 
Algorithm that uses the estimate of RR drift rate to compensate for 
that drift, adjusting the estimated RR over time according to the drift 
rate. 
Effect: 
For PTP Relay Instances, minimises errors in the Correction Field 
caused by Rate Ratio drift. 
For PTP End Instances, a similar approach can reduce errors in keeping 
ClockTarget in line with ClockSource between arrival of Sync 
messages, but is outside the scope of this document. 

Pdelay Interval Consistency Description: 
This document requires tighter control of the interval between Pdelay 
messages generated at the Grandmaster PTP Instance than the 
defaults in IEEE 802.1AS-2020. 
Effect: 
This document requires the use of Sync messages to calculate NRR 
(see above). However, when a sufficient number of Sync messages are 
not available, for example on startup or after a reconfiguration, 
Pdelay_Resp messages may be used instead.  In such cases, errors due 
to clock drift at Relay Instances have a tendency to cancel out. A clock 
drift which generates a positive error in NRR measurement on receipt 
of a Pdelay_Resp message generates a negative error in NRR 



measurement at the next node.  The degree of cancellation depends 
on the consistency of the intervals over which NRR is measured at 
neighboring nodes.  Tighter control of the Pdelay Interval increases 
the consistency of the measurement interval and thus decreases the 
amount of error. 

Mean Residence Time Description: 
This document defines an mean Residence Time requirement, where 
the averagewhich is significantly lower than the default maximum 
Residence Time in IEEE 802.1AS-2020. 
Effect: 
The amount of error in the Correction Field at the PTP End Instance 
due to clock drift is proportional to the cumulative meanLinkDelay 
and residenceTime experienced by a Sync message during transit from 
the Grandmaster PTP Instance to the PTP End Instance. Specifying a 
lower mean residenceTime reduces this source of error. 

 

2.1. Grandmaster PTP Instance Implementation 
Depending on implementation, a Grandmaster PTP Instance can… 

1. Contain a single oscillator used for both Local Clock and Clock Source, 

2. Contain separate oscillators for Local Clock and Clock Source, or 

3. Contain only an oscillator for Local Clock and accept an external input for Clock Source. 

In some cases a Grandmaster PTP instance can support more than one mode of operation and transition 

between them depending on changes in system network configuration (see Splitting, Joining and 

Aligning Time Domains). 

In the first case the rateRatio and rateRatioDrift fields transmitted by the Grandmaster PTP Instance will 

be zero, reflecting the fact there is no difference between the Local Clock and Clock Source frequencies. 

In the second and third cases there can be differences between the Local Clock and Clock Source 

frequencies.  Any differences will be reflected in the rateRatio and rateRatioDrift fields transmitted by 

the Grandmaster PTP Instance.  This means that Grandmaster PTP instances will track rateRatio over 

time in order to calculate rateRatioDrift, similarly to PTP Relay Instances and PTP End Instances.  The 

exact implementation can vary. 

2.2. Splitting, Joining and Aligning Time Domains 
Modular machines or production cells can allow the splitting and combining of machines if this is 

required by the production process.  When separate, the ClockSources of two machines run separately, 

each with its own time domain.  If both ClockSources are traceable to the same PTP timescale, the 

difference between the ClockSources may be relatively small.  If traceable to different timescales, 

especially if one or both are ARB timescales, there can be a very large difference between the 

ClockSources. 

When two machines are joined, the first machine’s time domain remains unaffected, and it can continue 

operation without disruption.  There are two typical approaches to how the second machine behaves.  

In the first case, the second machine’s time domain either ceases to exist, with its PTP Instances 



becoming part of the first machine’s time domain.  In the second case, the second machine’s time 

domain is gradually aligned with the first machine’s time domain such that control loop cycles are 

coordinated. 

2.2.1 Joining Machines with Single Time Domain 
In the first case, where the second machine’s time domain ceases to exist, a discontinuity in timing for 

the second machine’s PTP Instances can occur, as they switch to use the first machine’s Grandmaster.  

Some implementations implement measures to limit such timing discontinuities, but these measures are 

outside the scope of this document.  Typically, in this case, the second machine is not operational while 

it is joined to the first.  It resumes operation once its PTP Instances have synchronised with the first 

machine’s Grandmaster. 

2.2.2 Joining Machines with Multiple Coordinated Time Domains 
In the second case, where the second machine’s time domain is gradually aligned with the first 

machine’s time domain, this typically requires both machines to be implementing the same control loop 

cycle time.  The goal is that, once coordinated, each control loop cycle of the first machine will be 

aligned with the start of a control loop cycle of the second machine, even though the two machines 

maintain separate time domains and there can be a large difference between their Clock Sources. 

In this case, after being joined together, the first machine effectively drives the second machine’s Clock 

Source faster or slower, during an alignment period, until coordination is achieved.  During the 

alignment period, this drive from the first machine can result in the second machines’s Clock Source 

temporarily exceeding the usual normative requirement on range of fractional frequency offset relative 

to the nominal frequency of ±50 ppm.  The usual normative requirement on range of rate of change of 

fractional frequency offset of ±1 ppm/s, applicable when split (i.e. independent) or coordinated (i.e. 

joined and stable, after the alignment period), may also be temporarily exceeded.  However, if the value 

stays with the range ±1.5 ppm/s, the network-level performance of 1 μs time synchronisation accuracy 

can be maintained.  For this reason, this document specifies a separate normative requirement for 

temporary, externally driven, rate of rate of change of fractional frequency offset. 

Since the second machine experiences no time discontinuities and the network-level performance is 

maintained the second machine can, if desired, continue operation during the alignment period. 

Once coordinated, the first machine continues to drive the Clock Source of the second machine to 

maintain coordination.  In this stable, coordinated mode of operation the normal range of ±1 ppm/s is 

not exceeded. 

The mechanism by which the first machine drives the Clock Source of the second machine is out of 

scope for this document. 

2.2.3 Splitting Machines 
In the first case, where the second machine’s time domain ceased to exist while joined to the first, 

splitting machines means that the second machine must create it’s own time domain again.  The second 

machine’s Clock Source typically starts at the PTP Grandmaster Instance’s last, best estimate of the first 

machine’s Clock Source.  It can take some time to before the time synchronisation accuracy of all the 

second machine’s PTP Instances relative to its Grandmaster can be relied upon.  For this reason, the 



second machine is typically not operational during the split.  Hot Standby can be employed to mitigate 

this transition time, but the details of how to do so are out of scope for this document. 

In the second case, where the second machine maintains its time domain while joined to the first, 

splitting machines means that the first machine ceases driving the second machine’s Clock Source to 

maintain coordination of control loop cycle times.  Without this drive, the two time domains can drift 

relative to each other.  Time synchronisation performance within the second machine is maintained 

during the split and the second machine can, if desired, continue operation throughout the process. 

2.3. PTP Link Characteristics 
A vast majority of time synchronisation error due PTP link characteristics is cTE due to asymmetrical 

path delay in one direction verses the other.  The mechanism to measure path delay assumes the link is 

symmetrical and cannot detect asymmetry, thus asymmetry causes an error.  The potential maximum 

asymmetry and thus error typically scales linearly with physical path length. 

The error budget for cTE due to PTP link characteristics for an entire system network is 200 ns.  In any 

specific system network this budget can be allocated as required with some links allocated a higher 

budget (typically longer length) than others. 

A typical specified maximum length asymmetrydelay skew for Category 6 Ethernet cables is <TBC>, 

which translates to a maximum path delay asymmetry of <TBD> 50 ns per 100 m.  If such cables are 

used, a maximum total cable length between Clock Source and Clock Target with 99 PTP Relay Instances 

between them (i.e. 100 network hops) is <TBC>400m. 

Depending It is possible for the delay skew in one section of cable to cancel all or part of a delay skew in 

the opposite direction from prior section but, depending on how cables are manufactured and 

deployed, it is feasible for the asymmetries delay skews of each every cable segment between a 

Grandmaster PTP Instance and a PTP End Instance to be additive. 

3. Notes on Normative Requirements 

3.1. Oscillator Requirements 
Clock drift at the Grandmaster PTP Instance causes greater dTE than the same amount of clock drift at a 

PTP Relay Instance or the PTP End Instance.  This document therefore requires tighter limits on 

maximum fractional frequency offset for an oscillator at the Grandmaster PTP Instance than at other 

instances. 

This document does not place requirements on operational temperature range or other environmental 

factors. The required oscillator behaviour is delivered for the operational conditions across which a 

device claims it is compliant. These conditions typically include temperature range but can also include 

rate of change of ambient temperature, supply voltage stability, amount of vibration and others. 

3.2. Timestamp Granularity Error 
Timestamp Granularity Error (TSGE) is the error in timestamping each incoming and outgoing message 

due to the maximum timestamp resolution of which an implementation is capable.  It is typically directly 

related to an implementation’s clock rate. For example, a clock rate of 125 MHz typically results in a 

maximum resolution of 8 ns while a clock rate of 500 MHz typically results in a maximum resolution of 

2 ns. 
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It is assumed that TSGE varies between -4 ns and +4 ns with an average of 0 ns.  Lower levels of TSGE are 

better.  Implementations where TSGE is higher will find some of the normative requirements difficult or 

impossible to meet. 

3.3. Dynamic Timestamp Error 
Dynamic Timestamp Error (DTSE) is the, effectively random, error in timestamping each incoming and 

outgoing event message due to an implementation’s inherent inaccuracies, excluding TSGE.  It is 

assumed to vary between a minimum of -6 ns and a maximum of +6 ns with an average of 0 ns. Lower 

levesl of DTSE are better. 

If an implementation timestamps an incoming or outgoing message at a point other than the PHY, any 

variability in delay between that point and the PHY (PHY delay) will translate to DTSE.  Some common 

implementations were not designed to limit this variability. If care is not taken to avoid implementations 

with high variability, the assumed DTSE range is easily exceeded.  Such implementations will find some 

of the normative requirements difficult or impossible to meet. 

3.4. Grandmaster PTP Instance Error Generation Requirements 
Table 12 sets normative requirements for error generation at a Grandmaster PTP Instance that ensure 

the relevant fields in the Sync and Sync_Followup messages it transmits are sufficiently accurate to 

deliver the network-level performance.  Table 103 describes how the normative requirements align with 

major sources of error. 

Table 103: Protocol configurations & other measures to achieve dTE budget 

 Normative Requirement  Main Sources of Error 

1 preciseOriginTimestamp + correctionField 
vs 
Direct measurement of Clock Source 

Timestamp Error relative to Clock Source plus 
accuracy measuring any internal delay 
between generation of the 
preciseOriginTimestamp and Sync messages 
transmission. 

2 rateRatio 
vs 
Direct measurement of Rate Ratio of Clock 
Source vs Local Clock 

Accuracy of internal mechanism to measure 
Rate Ratio of Clock Source vs. Local Clock, 
potentially including algorithms that track 
RateRatioDrift and modify Rate Ratio 
accordingly1 

3 rateRatioDrift 
vs 
Direct measurement of Rate Ratio Drift of Clock 
Source vs Local Clock 

Accuracy of internal mechanism to measure 
Rate Ratio Drift of Clock Source vs Local Clock1 

4 syncEgressTimestamp 
vs 
Direct measurement of Local Clock 

Timestamp Error relative to Local Clock 

1 – Only applicable if Clock Source and Local Clock are not locked to the same frequency by the 

implementation.  If they are locked then rateRatio will be 0 ppm and rateRatioDrift will be 0 ppm/s. 

Limits on error generation due to Clock Drift are defined via normative requirements in Table 9. 



3.5. PTP Relay Instance 
Table 13 sets normative requirements for error generation at a PTP Relay Instance that ensure the 

relevant fields in the Sync and Sync_Followup messages it transmits as part of Sync processing are 

sufficiently accurate to deliver the network-level time sync performance.  The requirements includes the 

ability to mitigate errors in rateRatio and rateRatio drift that would otherwise occur due to clock drift at 

the current PTP Relay Instance, an adjacent PTP Relay Instance, or the Grandmaster PTP Instance.  Table 

104 describes how the normative requirements align with major sources of error. 

Table 104: Protocol configurations & other measures to achieve dTE budget 

 Normative Requirement Clock Drifts Main Sources of Error 

1 

preciseOriginTimestamp + 
correctionField 
vs 
Direct measurement of Clock 
Source at Grandmaster PTP 
Instance 

None 

Timestamp Errors relative to Local Clock 
when measuring Residence Time, i.e. 
Sync message ingress and egress. 

Errors in Rate Ratio used when 
translating Residence Time measured in 
terms of Local Clock to Residence time 
in terms of Clock Source, although these 
are typicaly orders of magnitude 
smaller than those from Timestamp 
Errors. 

2 

rateRatio 
vs 
Direct measurement of Rate 
Ratio of Clock Source vs 
Local Clock 

None 

Timestamp Error affecting 
measurement of NRR when there is no 
NRR Drift.  The effect should be low.  
This normative requirement is a 
baseline for the next two requirements. 

3 Clock Source (RR Drift) 

Accuracy of measurement of NRR when 
there is no NRR Drift (as above), and 
calculation of rateRatio, including 
algorithms for RR Drift tracking & error 
compensation. 

4 

Clock Source and Local 
Clock at previous PTP 
Instance (RR Drift & 
NRR drift) 

Accuracy of measurement of NRR when 
there is NRR Drift, including algorithms 
for NRR Drift tracking & error 
compensation, and calculation of 
rateRatio, including algorithms for RR 
Drift tracking & error compensation. 

Combined with the previous normative 
requirement this effectively requires a 
level of performance regarding NRR 
Drift tracking & error compensation, 
whether the source of the NRR drift is 
the Local Clock of the current PTP 
Instance or the previous PTP Instance. 



5 

rateRatioDrift 
vs 
Direct measurement of Rate 
Ratio Drift of Clock Source vs 
Local Clock 

None 

Timestamp Error affecting 
measurement of NRR Drift when there 
is no NRR Drift.  The effect should be 
low.  This normative requirement is a 
baseline for the next two requirements. 

6 Clock Source (RR Drift) 

Accuracy of measurement of NRR Drift 
when there is no NRR Drift (as above), 
and calculation of rateRatioDrift, 
including algorithms for RR Drift 
tracking & error compensation. 

7 

Clock Source and Local 
Clock at previous PTP 
Instance (RR Drift & 
NRR drift) 

Accuracy of measurement of NRR Drift 
when there is NRR Drift, including 
algorithms for NRR Drift tracking & 
error compensation, and calculation of 
rateRatioDrift, including algorithms for 
RR Drift tracking & error compensation. 

Combined with the previous normative 
requirement this effectively requires a 
level of performance regarding NRR 
Drift tracking & error compensation, 
whether the source of the NRR drift is 
the Local Clock of the current PTP 
Instance or the previous PTP Instance. 

8 

syncEgressTimestamp 
vs 
Direct measurement of Local 
Clock 

None Timestamp Error relative to Local Clock 

 

Limits on error generation due to Clock Drift are defined via normative requirements in Table 9. 

3.6. PTP End Instance 
Table 14 sets normative requirements for error generation at a PTP End Instance that ensure the 

ClockTarget it generates from incoming Sync and Sync_Followup messages is sufficiently accurate to 

deliver the network-level time sync performance.  Table 105 describes how the normative requirements 

align with major sources of error. 

Table 103: Protocol configurations & other measures to achieve dTE budget 

 Normative Requirement Clock Drifts Main Sources of Error 

1 
ClockTarget 
vs 
ClockSource 

None 

Timestamp Error affecting 
measurement of NRR Drift when there 
is no NRR Drift.  The effect should be 
low.  This normative requirement is a 
baseline for the next two requirements. 



2 Clock Source (RR Drift) 

Accuracy of measurement of NRR Drift 
when there is no NRR Drift (as above), 
and calculation of rateRatioDrift, 
including algorithms for RR Drift 
tracking & error compensation. 

3 

Clock Source and Local 
Clock at previous PTP 
Instance (RR Drift & 
NRR drift) 

Accuracy of measurement of NRR Drift 

when there is NRR Drift, including 

algorithms for NRR Drift tracking & 

error compensation, and calculation of 

rateRatioDrift, including algorithms for 

RR Drift tracking & error compensation. 

Combined with the previous normative 
requirement this effectively requires a 
level of performance regarding NRR 
Drift tracking & error compensation, 
whether the source of the NRR drift is 
the Local Clock of the current PTP 
Instance or the previous PTP Instance. 

 

Limits on error generation due to Clock Drift are defined via normative requirements in Table 9. 

4. Approach to Testing Normative Requirements 
This document does not specify tests to ensure conformance with the normative requirements.  

However, it is important that the normative requirements are, in principle, testable.  This clause 

describes, at a high level, approaches a test specification might take to testing conformance with some 

of the normative requirements related to time synchronisation. 

It is assumed that test equipment can precisely measure the output of the ClockSource (at a 

Grandmaster PTP Instance), ClockTarget (at a PTP End Instance) and Local Clock (at any PTP Instance) to 

ensure conformance with frequency offset and frequency offset drift requirements. 

It is also assumed that test equipment can generate sequences of PTP messages with precise timing and 

content (for testing PTP Relay Instances and PTP End Instances) and receive, log, and process sequences 

of PTP messages with precise timing measurement, e.g. of message arrival. 

4.1. Testing Grandmaster PTP Instance 
Figure 100 illustrates an approach to testing the four normative requirements discussed in sub-clause 

3.4. 



 

Figure 100: Approach to Testing Normative Requirements for Grandmaster PTP Instance 

The test equipment can calculate the time the Sync message is output at the DUT by subtracting the link 

delay from the measured arrival time at the test equipment. 

For test 1, the test equipment compares the value of the preciseOriginTimestamp + correctionField 

against its measurement of the ClockSource. 

For tests 2 and 3, the test equipment compares the values in the rateRatio and rateRatioDrift fields with 

its calculation of the equivalent values based on its measurements of the ClockSource and Local Clock. 

For test 4, the test equipment compares the value of the syncEgressTimestamp against its measurement 

of the Local Clock. 

4.2. Testing PTP Relay Instance 
Figure 101 illustrates an approach to testing normative requirements 1, 2, 5 and 8 discussed in sub-

clause 3.5. 



 

Figure 101: Approach to Testing Normative Requirements for PTP Relay Instance - 1 

The test equipment can compare the DUT’s output Sync message to the expected result given the 

measurement of the Local Clock and the timing of the input Sync message transmission and output Sync 

message reception. 

For these four tests, the Emulated ClockSource and Emulated Local Clock are stable and in sync.  In 

practice, both can be equal to the test equipment’s Very Accurate Clock.  In the input Sync message, 

rateRatio will be 0 ppm and rateRatioDrift will be 0 ppm/s.  If the Local Clock of the PTP Relay Instance is 

also stable, it will measure NRR of 0 ppm and NRR Drift of 0 ppm/s. 

The test equipment can calculate the time the output Sync message is output at the DUT by subtracting 

the link delay from the measured arrival time at the test equipment. 

For test 1, the test equipment can compare the increase in the value of the correctionField to the 

measured meanLinkDelay (from the test equipment to the DUT) plus residenceTime.  The test 

equipment will need to account for the additional delay between the PTP Relay Instance’s transmission 

of the input Sync message and its reception by the test equipment. 

For tests 2 and 5, the test equipment can compare the rateRatio and rateRatioDrift fields in the output 

Sync message with the equivalent calculated values between the measured Local Clock and the 

Emulated ClockSource. 

For test 8, the test equipment can compare syncEgressTimestamp value in the ouput Sync message with 

its measurement of the Local Clock. 

Figure 102 illustrates an approach to testing normative requirements 3 and 6 discussed in sub-clause 

3.5. 



 

Figure 102: Approach to Testing Normative Requirements for PTP Relay Instance - 2 

For these two tests, the fractional frequency offset of the Emulated ClockSource is increasing at a 

defined ppm/s rate relative to the Very Accurate Clock.  The Emulated Local Clock is stable; in practice, it 

can be equal to the test equipment’s Very Accurate Clock.  In the output Sync message, the rateRatio 

field will increase over time, and the rateRatioDrift field will maintain a matching positive value.  If the 

Local Clock of the PTP Relay Instance is also stable, it will measure NRR of 0 ppm and NRR Drift of 0 

ppm/s. 

For tests 3 and 6, the test equipment can compare the rateRatio and rateRatioDrift fields in the output 

Sync message with the equivalent calculated values between the measured Local Clock and the 

Emulated ClockSource. 

Figure 102 illustrates an approach to testing normative requirements 4 and 7 discussed in sub-clause 

3.5. 



 

Figure 103: Approach to Testing Normative Requirements for PTP Relay Instance - 3 

For these two tests, the fractional frequency offsets of the Emulated ClockSource and the Emulated 

Local Clock are equal and increasing at a defined ppm/s rate relative to the Very Accurate Clock.  In the 

output Sync message, the rateRatio field will be 0 ppm, and the rateRatioDrift field will be 0 ppm/s.  If 

the Local Clock of the PTP Relay Instance is stable, the NRR it measures will increase over time and the 

NRR Drift it measures will maintain a matching positive value. 

For tests 4 and 7, the test equipment can compare the rateRatio and rateRatioDrift fields in the output 

Sync message with the equivalent calculated values between the measured Local Clock and the 

Emulated ClockSource. 

4.3. Testing PTP End Instance 
Figure 104 illustrates an approach to testing the three normative requirements discussed in sub-clause 

3.6. 



 

Figure 104: Approach to Testing Normative Requirements for PTP End Instance 

The test equipment can compare its measurement of the DUT’s ClockTarget to the expected result given 

the input Sync messages it generates.  It will need to account for the additional delay between its 

transmission of the input Sync message and the reception of the message by the DUT. 

For test 1, the Emulated ClockSource and Emulated Local Clock are stable and in sync.  In practice, both 

can be equal to the test equipment’s Very Accurate Clock.  In the input Sync message, rateRatio will be 0 

ppm and rateRatioDrift will be 0 ppm/s.  If the Local Clock of the PTP End Instance is also stable, it will 

measure NRR of 0 ppm and NRR Drift of 0 ppm/s. 

For test 2, the fractional frequency offset of the Emulated ClockSource is increasing at a defined ppm/s 

rate relative to the Very Accurate Clock.  The Emulated Local Clock is stable; in practice, it can be equal 

to the test equipment’s Very Accurate Clock.  In the output Sync message, the rateRatio field will 

increase over time, and the rateRatioDrift field will maintain a matching positive value.  If the Local Clock 

of the PTP Relay Instance is also stable, it will measure NRR of 0 ppm and NRR Drift of 0 ppm/s. 

For test 3, the fractional frequency offsets of the Emulated ClockSource and the Emulated Local Clock 

are equal and increasing at a defined ppm/s rate relative to the Very Accurate Clock.  In the output Sync 

message, the rateRatio field will be 0 ppm, and the rateRatioDrift field will be 0 ppm/s.  If the Local Clock 

of the PTP Relay Instance is stable, the NRR it measures will increase over time and the NRR Drift it 

measures will maintain a matching positive value. 

5. Example Algorithms 
This document does not place normative requirements on the use of specific algorithms.  However, the 

normative requirements assume the use of algorithms to reduce the effect of errors in meanLinkDelay 



and to track clock drift and compensate for consequent errors.  PTP instances that do not implement 

algorithms will find it difficult or impossible to meet the normative requirements. 

This clause provides examples of algorithms that can be used for… 

• Tracking NRR drift. 

• Correcting for errors in measured NRR (mNRR) due to NRR drift. 

• Calculating RR drift. 

• Correcting for errors in measured RR (mRR) due to RR drift. 

• Reducing the effect of errrors in meanLinkDelay 

For measured NRR, measured RR, and meanLinkDelay, an option for how startup behaviour can be 

handled is provided. 

5.1. Algorithm for Tracking NRR Drift 
NRR Drift Tracking and Error Correction is carried out for each network hop, i.e. at every node other 

than the Grandmaster.  It is based on pairs of timestamps with each pair associated with a Sync message 

transmitted from the previous node (n-1) to the current node (n) 

• ts1outP  – Timestamp of the Sync message egress from the previous node (n-1), timestamped by 

that node’s Local Clock. Unit: ns. 

• ts2in  – Timestamp of the Sync message ingress to the current node (n), timestamped by that 

node’s Local Clock. Unit: ns. 

All timestamps are affected by Timestamp Errors. 

The algorithm uses information from the 32 most recent Sync messages.  However, a node need only 

keep track of the 9 most recent pairs of timestamps from the most recent (x) to the 9th most recent (x-8) 

Sync message.  The algorithm generates one measurement of NRR using the prior 2 s of Sync message 

data (on average, based on a nominal Sync Interval of 125 ms), and a second measure based on the 2 s 

of Sync message data prior to that.  It then uses the difference in the two measurements over the 

interval between the effective measurement points to calculate the NRR drift rate. 

On arrival of a new timestamp pair (x), a node executes a NRR calculation… 

𝑁𝑅𝑅𝑐𝑎𝑙𝑐(𝑥) = (
𝑡𝑠1𝑜𝑢𝑡𝑃(𝑥)−𝑡𝑠1𝑜𝑢𝑡𝑃(𝑥−8)

𝑡𝑠2𝑖𝑛(𝑥)−𝑡𝑠2𝑖𝑛(𝑥−8)
− 1) × 106 ppm 

…with an associated effective measurement point… 

𝑁𝑅𝑅𝑐𝑎𝑙𝑐𝑇(𝑥) =
𝑡𝑠2𝑖𝑛(𝑥)+𝑡𝑠2𝑖𝑛(𝑥−8)

2
 ns 

A node keeps track of the 24 most recent NRR calculations and effective measurement points, from the 

most recent (x) to the 24th most recent (x-23). 

After of a new most-recent NNR calculation, a node calculates an NRR drift rate… 

𝑁𝑅𝑅𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐴 = ∑
𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐(𝑖)

8
𝑥
𝑖=𝑥−7  ppm 

𝑁𝑅𝑅𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐵 = ∑
𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐(𝑖)

8
𝑥−16
𝑖=𝑥−23  ppm 



𝑁𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = ∑
𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐𝑇(𝑖)

8
𝑥
𝑖=𝑥−7 − ∑

𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐𝑇(𝑖)

8
𝑥−16
𝑖=𝑥−23  ns 

𝑁𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝑅𝑎𝑡𝑒(𝑛) = (
𝑁𝑅𝑅𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐴−𝑁𝑅𝑅𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐵

𝑁𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙
) × 109 ppm/s 

…where NRRdriftRate(n) is the NRR drift rate for the current Node n. 

5.2. Algorithm to Compensate for Errors in measured NRR due to Clock Drift 
The algorithm to measure NRR uses data from the previous 1 s of Sync message data, combined with the 

NRR drift estimate from the previous step.  This smaller amount of data (vs. that used for either of the 

NRR measurements in the previous step) is employed as it improves responsiveness to sudden changes 

in NRR drift with minimal loss of accuracy. 

On arrival of a new timestamp pair (x), a node executes a NRR calculation… 

𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐(𝑥) = (
𝑡𝑠1𝑜𝑢𝑡𝑃(𝑥)−𝑡𝑠1𝑜𝑢𝑡𝑃(𝑥−4)

𝑡𝑠2𝑖𝑛(𝑥)−𝑡𝑠2𝑖𝑛(𝑥−4)
− 1) × 106 ppm 

…with an associated effective measurement point… 

𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐𝑇(𝑥) =
𝑡𝑠2𝑖𝑛(𝑥)+𝑡𝑠2𝑖𝑛(𝑥−4)

2
 ns 

A node keeps track of the 4 most recent mNRR calculations and effective measurement points, from the 

most recent (x) to the 4th most recent (x-3).  (The mNRR calculations use information from the 5 most 

recent Sync messages, but the node is already keeping track of information from the 9 most recent Sync 

messages for the NRR drift tracking algorithm.) 

The node then calculates an error-corrected measured NRR value. 

  



𝐹𝑜𝑟 𝑖 = 𝑥 𝑡𝑜 (𝑥 − 3) 

𝑚𝑁𝑅𝑅𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑(𝑖) = 𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐(𝑖) + (𝑚𝑁𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝑅𝑎𝑡𝑒(𝑛) ×
(𝑡𝑠2𝑖𝑛(𝑥)−𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐𝑇(𝑖))

109 ) ppm 

𝑚𝑁𝑅𝑅𝑐 = ∑
𝑚𝑁𝑅𝑅𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑(𝑖)

4
𝑥
𝑖=𝑥−3  ppm 

The result is a measured NRR value, error-corrected to the time when the most recent Sync message 

was received. 

5.2.1 Measured NRR Algorithm – Startup Behaviour 
NRR is used when calculating meanLinkDelay and output Sync message fields.  The first NRR drift 

calculation will only be available after receipt of 32 Sync messages, i.e. after approximately 4 seconds of 

operation given the 125 ms Sync Interval. During this time meanLinkDelay and output Sync messages 

fields must still be calculated, so an alternative must be used, even if it can not deliver the same 

assurances regarding network-level performance. 

If measured NRR from Sync message information is unavailable but equivalent information from 

Pdelay_Resp messages is available it may be substituted for Sync message information.  However, 

measuring NRR using Pdelay_Resp messages is vulnerable to additional error due to clock drift between 

the time NRR is measured, on receipt of the latest Pdelay_Resp message, and use of the measurement 

during Sync message processing.  This is the reason using Sync message information is preferable.  It also 

means that a switch to using Sync message information as soon as possible is desirable.  It is technically 

possible to calculate a NRR using a combination of Pdelay_Resp and Sync messages but this can be risky 

due to the potential for very short intervals between messages and resulting high error due to 

timestamp errors, so it not recommended. 

The following describes potential startup behaviour when using either Sync or Pdelay_Resp message 

information.  It is the responsibility of implementers to decide whether and when to use Pdelay_Resp 

message information and when to switch to using Sync message information.  It is, however, a 

normative requirement that implementations use Sync message information when information from 32 

or more timely Sync messages is available. 

The following describes potential startup behaviour applicable to either Sync or Pdelay_Resp message 

information. 

At least two two messages must be received before calculating a NRR value. 

Prior to two messages being received, NRR = 1 (i.e. 0 ppm) should be used. 

Once two messages have been received, NRR should be calculated using the formula… 

2nd message: 𝑚𝑁𝑅𝑅 = ((
𝑡3(𝑥)−𝑡3(𝑥−1)

𝑡4(𝑥)−𝑡4(𝑥−1)
) − 1) × 106 ppm 

Where… 

• 𝑡3 – Timestamp of the Pdelay_Resp message egress from the previous node (n-1), timestamped 

by that node’s Local Clock. Unit: ns. 



• 𝑡4 – Timestamp of the Pdelay_Resp message ingress to the current node (n), timestamped by 

that node’s Local Clock. Unit: ns. 

When three to four messages have been received, NRR should be calculated using the following 

formulae… 

3rd message: 𝑚𝑁𝑅𝑅 = ((
𝑡1𝑜𝑢𝑡𝑃(𝑥)−𝑡1𝑜𝑢𝑡𝑃(𝑥−2)

𝑡2𝑖𝑛(𝑥)−𝑡2𝑖𝑛(𝑥−2)
) − 1) × 106  ppm 

4th message: 𝑚𝑁𝑅𝑅 = ((
𝑡1𝑜𝑢𝑡𝑃(𝑥)−𝑡1𝑜𝑢𝑡𝑃(𝑥−3)

𝑡2𝑖𝑛(𝑥)−𝑡2𝑖𝑛(𝑥−3)
) − 1) × 106  ppm 

On arrival of the 5th Sync message the first mNRRcalc and mNRRcalcT calculations can take place and 

should be used for NRR… 

𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐(𝑥) = (
𝑡𝑠1𝑜𝑢𝑡𝑃(𝑥)−𝑡𝑠1𝑜𝑢𝑡𝑃(𝑥−4)

𝑡𝑠2𝑖𝑛(𝑥)−𝑡𝑠2𝑖𝑛(𝑥−4)
− 1) × 106 ppm 

𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐𝑇(𝑥) =
𝑡𝑠2𝑖𝑛(𝑥)+𝑡𝑠2𝑖𝑛(𝑥−4)

2
 ns 

5th Sync message: 𝑚𝑁𝑅𝑅 = 𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐(𝑥) ppm 

As the 6th, 7th and 8th messages arrive an average can be taken and used for NRR, so… 

6th message: 𝑚𝑁𝑅𝑅 = ∑
𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐(𝑖)

2
𝑥
𝑖=𝑥−1  ppm 

7th message: 𝑚𝑁𝑅𝑅 = ∑
𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐(𝑖)

3
𝑥
𝑖=𝑥−2  ppm 

8th message: 𝑚𝑁𝑅𝑅 = ∑
𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐(𝑖)

4
𝑥
𝑖=𝑥−3  ppm 

For the 9th to the 31st message, the same equation as for the 8th message can be used. 

Once the 32nd message arrives, the regular equations with NRR drift tracking and error correction can be 

used. 

5.3. Algorithm for Tracking RR Drift 
A Sync or Sync_Followup message carries the rateRatio field, which informs each node of the previous 

node’s estimate of its (the previous node’s) Rate Ratio.  This document also requires support for the 

Drift_Tracking TLV that carries the rateRatioDrift field, which informs each node of the previous node’s 

estimate of its (the previous node’s) Rate Ratio Drift. 

If the implementation of the Grandmaster PTP Instance means the ClockSource and Local Clock (at the 

Grandmaster PTP Instance) are linked such that the two are always operating at the same frequency, 

the rateRatio field received by the first node (Node 1) will always be 0 ppm and the rateRatioDrift field 

will always be 0 ppm/s.  Thus, at Node 1, RR will equal NRR, RR Drift will equal NRR Drift, and therefore 

Clauses 5.1 and 5.2 describe how to calculate RR and RR Drift at Node 1. 

If the implementation of the Grandmaster PTP Instance means the ClockSource and Local Clock (at the 

Grandmaster PTP Instance) can operate at different frequencies, the implementation populates the 

rateRatio and rateRatioDrift field with values reflecting those differences. 



In either case all PTP Instances, other than the Grandmaster PTP Instance, calculate an estimate of the 

local Rate Ratio Drift when the latest Sync Message is received, based on the received rateRatioDrift 

field and the local measure of NRR Drift.  The Rate Ratio Drift Rate from the previous node is in ppm/s 

relative to the timebase  of its Local Clock (i.e. the “s” in “ppm/s”).  For highest precision, this cam be 

converted to the timebase of the current node’s Local Clock. 

𝑟𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜𝐷𝑟𝑖𝑓𝑡(𝑛) =
𝑟𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜𝐷𝑟𝑖𝑓𝑡(𝑛−1)

(1+
𝑚𝑁𝑅𝑅𝑐(𝑛)

106 )
+ 𝑁𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝑅𝑎𝑡𝑒(𝑛) ppm/s 

However, given that adding ppm/s already lacks the precision of multiplying actual ratios, this 

simplification delivers similarly accurate results. 

𝑟𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜𝐷𝑟𝑖𝑓𝑡(𝑛) = 𝑟𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜𝐷𝑟𝑖𝑓𝑡(𝑛 − 1) + 𝑁𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝑅𝑎𝑡𝑒(𝑛) ppm/s 

5.4. Algorithm to Compensate for Errors in measured RR due to Clock Drift 
On receipt of a Sync or Sync_Folloup message, all PTP Relay Instances estimate a measured RR (mRR) 

based on the received rateRatio field and the local measure of NRR.  An mRR value is used to translate 

the sum of meanLinkDelay and residenceTime from Local Clock timebase into Grandmaster timebase.  

An mRR value is also passed in the transmitted Sync or Sync_Followup message’s rateRatio field to the 

next node.  Errors in these estimates due to clock drift can be reduced by taking account of RR Drift.  

Since the optimal point in time for each estimate is different, the amount of applicable RR Drift is 

different, and hence the estimates will be different. 

(For discussion of how different Grandmaster PTP Implementations affect the behaviour of a PTP Relay 

Instance at Node 1 – or not – see Clause 5.3.) 

A PTP End Instance is similar in that it estimates mRR on receipt of a Sync message, subsequently uses 

an mRR value, and errors in the latter due to clock drift can be mitigated by taking account of RR Drift.  

However, unlike a PTP Relay Instance, the mRR value is used to keep the ClockTarget in line with the 

ClockSource and there is no need to transmit a rateRatio field to a subsequent node. 

For a PTP Relay Instance there are three points in time of interest: 

• Point A: Receipt of the Sync Message by the current node (Node n) 

• Point B: Mid-point between transmission of the Sync message by the previous node (Node n-1) 

and transmission of the consequent Sync message by the current node (Node n) 

• Point C: Transmission of the Sync Message by the current node (Node n) 

Figure 100 illustrates these points and the associated calculations. 



 

Figure 104: RR Drift Tracking and Error Compensation Calculations 

The estimate of RR when the Sync message arrives can be calculated as follows. 

𝑚𝑅𝑅𝑎(𝑛) = 𝑟𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜(𝑛 − 1) + 𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝑛−1→𝑛((𝑛 − 1)𝑐 → 𝑛𝑎) + 𝑚𝑁𝑅𝑅𝑐𝑎(𝑛) ppm 

 = 𝑟𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜(𝑛 − 1) + (
𝑟𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜𝐷𝑟𝑖𝑓𝑡(𝑛−1)

(1+
𝑚𝑁𝑅𝑅𝑐(𝑛)

106 )
× 𝑚𝑒𝑎𝑛𝐿𝑖𝑛𝑘𝐷𝑒𝑙𝑎𝑦(𝑛)) + 𝑚𝑁𝑅𝑅𝑐(2) ppm 

Where 𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝑛−1/𝑛((𝑛 − 1)𝑐 → 𝑛𝑎) is amount 𝑟𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜(𝑛 − 1) drifts between transmittion of the 

Sync message at Node n-1 and reception at Node n.  This is 𝑟𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜𝐷𝑟𝑖𝑓𝑡(𝑛 − 1) multipled by 

meanLinkDelay but, since meanLinkDelay is measured in terms of Node n’s Local Clock and 

rateRatioDrift is in terms of Node n-1’s Local Clock the latter should be divided by the NRR for the 

highest accuracy. 

However, given that adding ppm/s already lacks the precision of multiplying actual ratios, this 

simplification delivers similarly accurate results. 

𝑚𝑅𝑅𝑎(𝑛) = 𝑟𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜(𝑛 − 1) + (𝑟𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜𝐷𝑟𝑖𝑓𝑡(𝑛 − 1) × 𝑚𝑒𝑎𝑛𝐿𝑖𝑛𝑘𝐷𝑒𝑙𝑎𝑦(𝑛)) + 𝑚𝑁𝑅𝑅𝑐(2) ppm 

Once the time Node n transmits the consequent Sync message is known, the correctionField value can 

be calculated. 

𝑚𝑅𝑅𝑏(𝑛) = 𝑚𝑅𝑅𝑎(𝑛) + 𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝑛(𝑎 → 𝑏) ppm 

 = 𝑚𝑅𝑅𝑎(𝑛) + (𝑟𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜𝐷𝑟𝑖𝑓𝑡(𝑛) ×
𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒𝑇𝑖𝑚𝑒(𝑛)−𝑚𝑒𝑎𝑛𝐿𝑖𝑛𝑘𝐷𝑒𝑙𝑎𝑦(𝑛)

2
) ppm 

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝐹𝑖𝑒𝑙𝑑(𝑛) = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝐹𝑖𝑒𝑙𝑑(𝑛 − 1) + (1 +
𝑚𝑅𝑅𝑏(𝑛)

106 ) × (𝑚𝑒𝑎𝑛𝐿𝑖𝑛𝑘𝐷𝑒𝑙𝑎𝑦(2) + 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒𝑇𝑖𝑚𝑒(2)) ns 

And the rateRatio field. 

𝑟𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜(𝑛) = 𝑚𝑅𝑅𝑎(𝑛) + 𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝑛(𝑎 → 𝑐) ppm 



 = 𝑚𝑅𝑅𝑎(𝑛) + (𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝑅𝑎𝑡𝑒(𝑛) × 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒𝑇𝑖𝑚𝑒(𝑛)) ppm 

5.4.1 Compensate for Errors in measured RR due to Clock Drift at PTP End Instance 
 

5.5. Mean Link Delay Averaging 
 


