
MACsec with
Pre-shared Keys

v0.1 – April 27, 2023

James A. McIntosh



2

Introduction
• Certain applications, such as automotive applications, require

fast start-up times.
• These times can be on the order of milliseconds, including device link-up

times, etc.

• These time constraints can make key exchange difficult while maintaining
security in the system.

• Many devices in these applications are intended to be small and
inexpensive.
• These devices will not likely want to implement large cryptographic

blocks, such as public key cryptography.

• Many will also want to avoid needing an on-chip CPU.



3

Ideas
• There are several ideas that I've considered as potential solutions, 

each with its own pros and cons (going from simplest to most 
complex).
• Pre-shared SAKs
• These are installed in a "safe" environment and are intended to have long lives (years?).
• XPN is likely used in this case.

• Pre-shared "Key Exchange Keys"
• They might use simple encryption of SAKs
• They might be true KEKs as used in MKA defined in 802.1X and use AES key wrap/unwrap.

• Pre-shared CAKs as used in MKA defined in 802.1X
• Can derive KEKs and ICKs given inputs from the host (requires AES-CMAC)
• Can derive SAKs given inputs from the host (requires AES-CMAC)
• Can receive SAKs from the network (requires AES key unwrap)

• Beyond these, a CPU is likely required.



4

Pre-shared SAKs
• These will need non-volatile storage for multiple (how many?) pre-

shared SAKs
• The keys are expected to have a long life, perhaps years
• This will likely necessitate XPN for all but the slowest data rates.

• Provisions will be needed to install or invalidate the keys in a "safe"
environment.
• In the factory.
• At the local auto shop where a new part might be installed.

• How do we make this safe?
• Once a key is compromised, it will have to be invalidated and

replaced, shortening the life of the part.
• Once all the keys are invalidated, the part is "bricked".



5

Pre-shared Key Exchange Keys
• Many considerations are the same as the pre-shared SAK case,

except that the session keys are loaded at each start-up from the
host.

• There are different possible methods that could be used here.
• Simple Method: SAKs are simply encrypted with the pre-shared key and passed

to the device where it is decrypted
• This might use basic AES.
• What are the strengths and weaknesses of this idea?

• Less Simple Method: The pre-shared key is the KEK defined in 802.1X for MKA.
• This would be slightly more complex and would require AES key unwrap in the device.
• Is this a real improvement over just simple encryption of the key?

• In general, this seems safer than the pre-shared SAK case, but has
more complexity and a slightly longer start-up time.



6

Pre-shared CAKs
• Many considerations are the same as the other pre-shared key

cases in terms of installation, key invalidation, etc.

• With pre-shared CAKs, the device can:
• Derive KEKs and ICKs given inputs from the host (requires AES-CMAC)

• Derive SAKs given inputs from the host (requires AES-CMAC)

• Receive SAKs from the network (requires AES key unwrap)

• This seems generally safer than the previous cases, but has more
complexity yet, and even longer start-up times.



7

Discussion?



8

Backup
CAK Key Hierarchy defined in 802.1X



9

Key Hierarchy

• Basic key hierarchy:

• CAK used to derive ICK and
KEK

• SAK can be from strong RNG
or derived from CAK, RNG,
and other data



10

Group CAKs Distributed via Pairwise CAKs
• Pairwise CAKs are uses to

generate the pairwise ICKs a
KEKs.

• These, in turn, are used to
distribute a group CAK.

• This group CAK is used to
generate the group ICK and
KEK, which is used to
distribute the SAKs


