Headroom Measurement Protocol Design

Lily Lv (Huawei)

Fei Chen (Huawei)

To-Do List

- Timestamp point clarification
 - > Need model/figure with labeled time points
- Protocol design of request-response measurement
- Managed objects
 - > The effort, implementation cost, and purpose of statistic gathering and retention requires careful consideration
- DCBX: PFC Configuration TLV format design ----- → more generic way????
 - > PFC configuration TLV defines Capability (round-trip, PTP-based)
 - > PFC informational TLV defines compensation value of PTP-based method

Conclusions:

- ✓ Ethertype for Qdt
 - > Reuse Qcz (CI) Ethertype 89-A2
- √ Timestamp accuracy
 - > Describe accuracy by number of pause quantas or number of maximum length frames, instead of number of nans seconds.

Timestamp Points Clarification

PFC Timestamp Points (Non-MACsec)

- PFC Headroom = t2-t1+ t4-t3
 - t1: RX queue is above threshold and invokes signal to PFC module.
 - t2: TX queue receives signal from PFC module and stops transmission.
 - t3: last packet is sent after TX queue is stopped
 - t4: last packet is received by RX queue

PFC Timestamp Points (Non-MACsec)

- Different procedure
 - PFC invocation-> traffic stop vs. Measurement request-> measurement response
- MAC control frame vs. MAC data frame
 - PFC pause frame takes the 'quick path' ----- > no data path delay, 'quick path' delay can be ignored
- PFC pause frame waits at most 1 MAC data frame to be sent ----- > t2-t1 is variable, consider worst case
- After PFC is taken action, at most one more MAC data frame is sent ----- > t4-t3 is variable, consider worst case

Figure N-3 Helps to Define Measurement Timestamp

Points (Non-MACsec)

PFC M_CONTROL.request is invoked, but a maximum length frame just started transmission 16160 BTs (Max Envelope Frame Size + IPG +SFD/Preamble) PFC frame begins transmission after maximum 672 BTs length frame completed (PFC Frame + IPG + SFD/Preamble) Last bit of PFC frame passed to MAC Service TXd_{s1} BTs (Interface Delay) Last bit of PFC frame Cable Delay sent into the wire Last bit of PFC frame received from the wire RXd_{s2} BTs (Interface Delay) PFC M_CONTROL.indi-802.1Q cation generated. Priority is paused, but maximum length frame 16160 BTs just started transmission (Max Envelope Frame Size + IPG +SFD/Preamble) Last bit of maximum length frame processed by Transmission HD_{s2} BTs Selection (Higher Layer Delay) Last bit of frame passed to MAC Service TXd_{s2} BTs (Interface Delay) Last bit of frame sent into Cable Delay Last bit from station 2 received from the wire RXd_{s1} BTs (Interface Delay) Last bit from station 2 received and queued. No more frames received for the duration of the PFC operation

Station 2

Station 1

Delay Value = 2*(Cable Delay) + TXds1 + RXds2 + HDs2 + TXds2 + RXds1 + 2*(Max Frame) + (PFC Frame)

Updated Figure N-3 (Non-MACsec) Statio

Figure N-3-Worst-case delay

PFC Timestamp Points in New Figure N-3 (Non-

MACsec)

RX queue is above

Invocation delay BTs

Cable Delay

RXds2 BTs

HDs2 BTs

HDs2' BTs

(data path delay)

TXds2 BTs

- RXds1 BTs

t3

(PFC reaction delay)

16160 BTs (Max \

SFD/Preamble 🦯

frame size + IPG+

threshold

PFC M CONTROL.request is

- Last bit of PFC frame received from the wire Last bit of PFC frame passed from MAC service
- PFC M CONTROL.indicaton generated Priority is paused, but max length frame just started transmission
- Last bit of maximum length frame processed by transmission selection
- Last bit of frame passed to MAC service
- Last bit of frame sent into the wire

- t1: RX queue is above threshold and invokes signal to PFC module.
- t2: TX queue receives signal from PFC module and stops transmission.
- t3: last packet is sent after TX queue is stopped
- t4: last packet is received by RX queue

Last bit from station 2

PFC Headroom Calculation (Non-MACsec)

- PFC Headroom = t2-t1+ t4-t3
 - t1: RX queue is above threshold and invokes signal to PFC module.
 - t2: TX queue receives signal from PFC module and stops transmission.
 - t3: last packet is sent after TX queue is stopped
 - t4: last packet is received by RX queue

- PFC Headroom = t2-t1+ t4-t3 + 2*(Max Frame)
 - t1: RX queue is above threshold and invokes signal to PFC module
 - t2: PFC M_CONTROL.indicaton generated. Priority is paused, but max length frame just started transmission
 - t3: last bit of maximum length frame processed by transmission selection
 - t4: last bit of frame received and queued

Measurement Timestamp Points (Non-MACsec) Station 2

- t1': last bit of measurement reg frame passed to MAC service
 - t1' PFC invocation delay PFC frame = t1
- t2': last bit of measurement reg frame received from MAC service
 - t2' + PFC reaction delay= t2
- t3': last bit of measurement resp frame processed by transmission selection
 - t3' = t3
- t4: last bit of measurement resp frame received and queued
 - t4' = t4

PFC Headroom Calculation by Measurement Timestamp

- PFC Headroom = t2-t1+t4-t3+2*(Max Frame)
 - t1: RX queue is above threshold and invokes signal to PFC module
 - t2: PFC M CONTROL indicaton generated. Priority is paused, but max length frame just started transmission
 - t3: last bit of maximum length frame processed by transmission selection
 - t4: last bit of frame received and queued

- PFC Headroom = (t2'+ PFC reaction delay) –(t1'-PFC invocation delay PFC frame) +t4'-t3' + 2*(Max Frame)
 - t1': last bit of measurement req frame passed to MAC service
 - t1' PFC invocation delay PFC frame = t1
 - t2': last bit of measurement req frame received from MAC service
 - t2' + PFC reaction delay= t2
 - t3': last bit of measurement resp frame processed by transmission selection
 - t3' = t3
 - t4: last bit of measurement resp frame received and queued
 - t4' = t4

Implementation Example (Non-MACsec)

- PFC Headroom = (t2'+ PFC reaction delay) –(t1'-PFC invocation delay-PFC frame) +t4'-t3' + 2*(Max Frame)
 = (t2" r_rx data path delay + PFC reaction time) (t1" + l_tx data path delay PFC invocation delay-PFC frame)
 +(t4" I rx data path delay)-(t3" + r tx data path delay) + 2*(Max Frame)
 - t1": last bit of req frame is generated by measurement module
 - t1" + l_tx data path delay = t1'
 - t2": last bit of req frame is received by measurement module
 - t2" r_rx data path delay = t2"
 - t3": last bit of resp frame is generated by measurement module
 - t3" + r_tx data path delay = t3"
 - t4': last bit of resp frame is received by measurement module
 - t4" I rx data path delay = t4'

Note: r_tx data path delay and l_rx data path delay are not full data path delay.

PFC Timestamp Points (MACsec)

- PFC Headroom = t2-t1+ t4-t3
 - t1: RX queue is above threshold and invokes signal to PFC module.
 - t2: TX queue receives signal from PFC module and stops transmission.
 - t3: last packet is sent after TX queue is stopped
 - t4: last packet is received by RX queue

PFC Timestamp Points (MACsec)

- Different procedure
 - PFC invocation-> traffic stop vs. Measurement request-> measurement response
- MAC control frame vs. MAC data frame
 - PFC pause frame traverses on 'quick path' ----- > no data path delay
- PFC pause frame waits at most 1 MAC data frame to be sent ----- > t2-t1 is variable
- After PFC is taken action, at most one more MAC data frame is sent ----- > t4-t3 is variable

PFC Timestamp Points in New Figure N-3 (MACsec)

PFC Headroom Calculation (MACsec)

- PFC Headroom = t2-t1+ t4-t3
 - t1: RX queue is above threshold and invokes signal to PFC module.
 - t2: TX queue receives signal from PFC module and stops transmission.
 - t3: last packet is sent after TX queue is stopped
 - t4: last packet is received by RX queue

- PFC Headroom = t2-t1+ t4-t3 + 2*(Max Frame)
 - t1: RX queue is above threshold and invokes signal to PFC module
 - t2: PFC M_CONTROL.indicaton generated. Priority is paused, but max length frame just started transmission
 - t3: last bit of maximum length frame processed by transmission selection
 - t4: last bit of frame received and queued

Measurement Timestamp Points (Non-MACsec) Station 2

threshold

Last bit of PFC frame passed

- t1': last bit of reg frame is passed from measurement module
 - t1' PFC invocation delay I tx shim layer delay = t1
- t2': last bit of reg frame is passed to measurement module
 - t2' + r rx shim layer delay + PFC reaction delay = t2
- t3': last bit of measurement resp frame processed by transmission selection
 - t3' = t3
- t4': last bit of measurement resp frame received and queued
 - t4' = t4

Measurement Timestamp Points (MACsec)

- PFC Headroom = t2-t1+ t4-t3 + 2*(Max Frame)
 - t1: RX queue is above threshold and invokes signal to PFC module
 - t2: PFC M_CONTROL.indicaton generated. Priority is paused, but max length frame just started transmission
 - t3: last bit of maximum length frame processed by transmission selection
 - t4: last bit of frame received and queued

- PFC Headroom = (t2' + r_rx_shim layer delay + PFC reaction delay) –(t1' PFC invocation delay l_tx_shim layer delay) +t4'-t3' + 2*(Max Frame)
 - t1': last bit of req frame is passed from measurement module
 - t1' PFC invocation delay l_tx_shim layer delay = t1
 - t2': last bit of req frame is passed to measurement module
 - t2' + r_rx_shim layer delay + PFC reaction delay = t2
 - t3': last bit of measurement resp frame processed by transmission selection
 - t3' = t3
 - t4': last bit of measurement resp frame received and queued
 - t4' = t4

Summary of PFC Timestamp Points

Non-MACsec

- PFC Headroom = t2-t1+ t4-t3 + 2*(Max Frame)
 - t1: RX queue is above threshold and invokes signal to PFC module
 - t2: PFC M_CONTROL.indicaton generated. Priority is paused, but max length frame just started transmission
 - t3: last bit of maximum length frame processed by transmission selection
 - t4: last bit of frame received and queued

MACsec

Summary of Measurement Timestamp Points

Non-MACsec

- PFC Headroom = (t2'+ PFC reaction delay) –(t1'-PFC invocation delay-PFC frame) +t4'-t3' + 2*(Max Frame)
 - t1': last bit of measurement req frame passed to MAC service
 - t2': last bit of measurement req frame received and queued
 - t3': last bit of measurement resp frame processed by transmission selection
 - t4: last bit of measurement resp frame received and queued

- PFC Headroom = (t2' + r_rx_shim layer delay + PFC reaction delay) (t1' – PFC invocation delay – l_tx_shim layer delay) +t4'-t3' + 2*(Max Frame)
 - t1': req frame is passed from measurement module
 - t2': req frame is passed to measurement module
 - t3': last bit of measurement resp frame processed by transmission selection
 - t4': last bit of measurement resp frame received and queued

MACsec

Thanks

Done: PFC Configuration TLV format design

- Proposal:
 - > PFC configuration TLV only includes 'capability'

Define priority of the 2 methods.

If non-PTP and PTP-based are supported on both sides, each node choose its own preference.

> 'PTP comp' for PTP-based measurement passes to peer separately.

Define a new informational TLV - PFC informational TLV

DCBX informational attributes: "Informational attributes are exchanged via LLDP without any participation in a DCBX state machine."

Each bit indicates one

capability.

Compensation value for PTP-based measurement

Timestamp Point Clarification (1/2)

Without MACsec

t1: last bit of measurement request message passed to MAC service

t4: last bit of measurement response message passed from MAC service

t2: last bit of measurement request message passed from MAC service

t3: last bit of measurement response message passed to MAC service

Modified model based on 802.1Q Figure N-2—Delay model

Timestamp Point Clarification (2/2)

Roundtrip delay

Delay Value = 2*(Cable Delay) + TXds1 + RXds2 + HDs2 + TXds2 + RXds1

t1: last bit of measurement request message passed to MAC service

t4: last bit of measurement response message passed from MAC service

t2: last bit of measurement request message passed from MAC service

t3: last bit of measurement response message passed to MAC service

Modified model based on 802.1Q Figure N-2—Delay model

Timestamp Accuracy

Local clock frequency drift analysis

Assume 5ppm oscillator, fiber cable 100Gbps and 10km link distance: (t4-t1) is no more than 200us: 100us link delay plus internal processing delay 1ns time offset in 200us, can be ignored.

Captured timestamp point analysis

Expected timestamp point:

t1: last bit of measurement request message passed to MAC service

t4: last bit of measurement request message passed from MAC service

t2: last bit of measurement request message passed from MAC service

t3: last bit of measurement request message passed to MAC service

Implementation example:

```
t1 = t1' + ePP delay
t4 = t4' - iPP delay
t1 = t1' + ePP delay
t4 = t4' - iPP delay
```

