Headroom Measurement Protocol Design

Lily Lv (Huawei) Fei Chen (Huawei)

To-Do List

✓ Timestamp point clarification

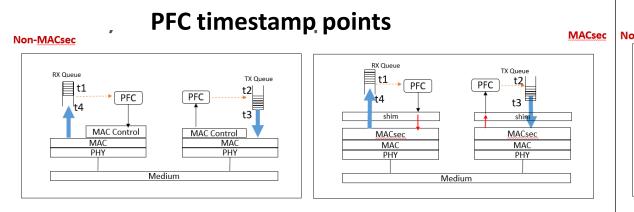
✓ DCBX: PFC Configuration TLV format design

- PFC configuration TLV defines Capability (round-trip, PTP-based)
- PFC informational TLV defines compensation value of PTP-based method
- Protocol design of request-response measurement
- Managed objects
 - > The effort, implementation cost, and purpose of statistic gathering and retention requires careful consideration

Conclusions:

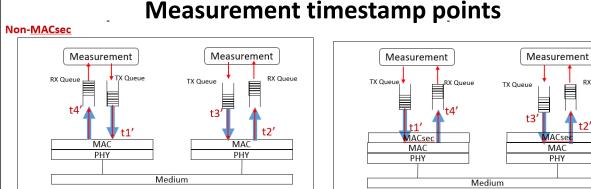
✓ Ethertype for Qdt

Reuse Qcz (CI) Ethertype 89-A2


✓ Timestamp accuracy

Describe accuracy by number of pause quantas or number of maximum length frames, instead of number of nans seconds.

Timestamp Points


- Specify measurement timestamp points
- Non-MACsec and MACsec use the same definition of measurement timestamp points
- Headroom calculation for Non-MACsec and MACsec are different

Timestamp Points

PFC Headroom = t2-t1+ t4-t3 + 2*(Max Frame)

- t1: RX queue is above threshold and invokes signal to PFC module
- t2: PFC M_CONTROL.indicaton generated. Priority is paused, but max length frame just started transmission
- t3: last bit of maximum length frame processed by transmission selection
- t4: last bit of frame received and queued

PFC Headroom = (t2'+ PFC reaction delay + r_tx_shim layer delay) – (t1'-PFC invocation delay-PFC frame - l_tx_shim layer delay) +t4'-t3' + 2*(Max Frame)

- t1': last bit of measurement req frame passed to MAC service
- t2': last bit of req frame is passed from MAC service
- t3': last bit of measurement resp frame processed by transmission selection
- t4': last bit of measurement resp frame received and queued

This is to be specified in Qdt.

MACsec

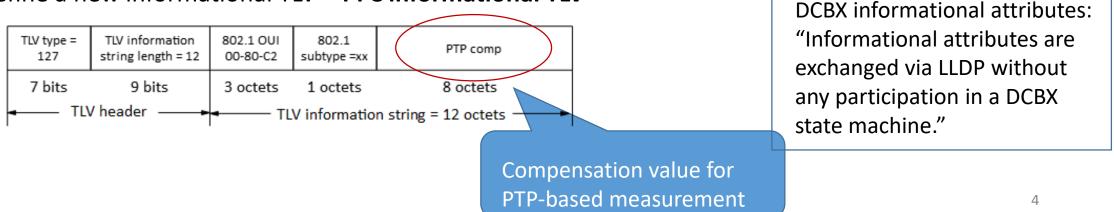
RX Queue

DCBX Design

- PTP-based measurement requires new informational TLV
- Measurement capability is reflected in PFC configuration TLV

PFC Configuration TLV format design

• Proposal :

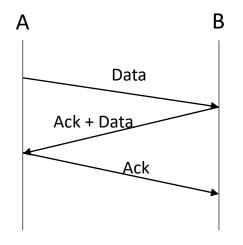

PFC configuration TLV only includes 'capability'

											·	
TLV type = 127	TLV information string length = 7	802.1 OUI 00-80-C2	802.1 subtype =11	Willing	мвс	MACsec cap	Rese rved	PFC cap	PFC Enable	non- PTP	PTP- based	Reser ved
7 bits	9 bits	3 octets	1 octets	1 bit	1 bit	1 bit	1 bit	4 bits	1 octets	1 bit	1 bit	6 bits
TLV header		•			TLV information string = 7 octets							

If non-PTP and PTP-based are supported on both sides, each node choose its own preference.

> 'PTP comp' for PTP-based measurement passes to peer separately.

Define a new informational TLV - **PFC informational TLV**


Each bit indicates one

capability.

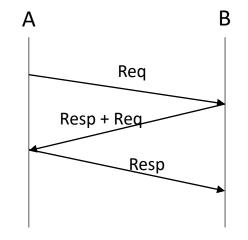
Measurement Protocol Design

Benefit of Piggybacking Roundtrip Measurement

Piggybacking for TCP acknowledgement

Advantage:

• Better utilize network bandwidth for full-duplex communication

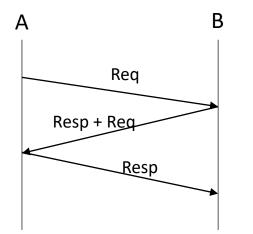

Disadvantage:

• Delay in the transfer of the ACK

Set a counter on host 'B' to control the waiting time for data

Piggybacking for roundtrip measurement

Advantage:


Complete the measurement faster in query lost case

Disadvantage:

• Waste network bandwidth in some cases

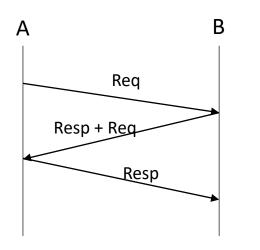
Minimize bandwidth waste by optimizing the mechanism?

Piggybacking Roundtrip Measurement Mechanism (1/2)

Assumption:

- Auto calculated headroom --- successfully take roundtrip measurement at N times, and take the average value as headroom n: the number of roundtrip measurement
- Request message sending interval is no more than T, but no less than t req_timer: timer for request message sending interval
- req(i): the *i*th request message
- resp(j): response message corresponding to the j^{th} request message

Processing:


Initial stage: set n=0, req_timer=0, i=0; send req(i)

Cases entering initial stage:

- Node just started
- Link port status changed
- Manually trigger the auto headroom calculation
- Vendor specified measurement cycle

•

Piggybacking Roundtrip Measurement Mechanism (2/2)

Exception handling:

- In order to avoid request message flooding the network, define a boundary of sent request messages M.
 - If i>M but n<N, system should stop the measurement, and report auto headroom calculation failed.

Processing:

- If req_timer increases to T, send req(i+1); set req_timer=0
- If receive req(k),
 - If n==N, send resp(k)
 - If n<N,
 - If req_timer<t, send resp(k)
 - If req_timer>=t, send resp(k)+req(i+1); set req_timer=0
- If receive resp(j),
 - Finish a single time roundtrip measurement; set n=n+1
 - If n<N, continue increasing req_timer (until req_timer=T to send req(i+1))
 - If n=N, calculate headroom by averaging N times roundtrip measurement results, auto calculated headroom successful.
- If receive resp(j)+req(k),
 - Finish a single time roundtrip measurement; set n=n+1
 - If n=N, calculate headroom by averaging N times roundtrip measurement results, auto calculated headroom successful; send resp(k)
 - If n<N,
 - If req_timer<t, send resp(k)
 - If req_timer>=t, send resp(k)+req(i+1); set req_timer=0

Measurement Message Format

Octet

1

3

3

4

Octet

1

1

1

2

3

11

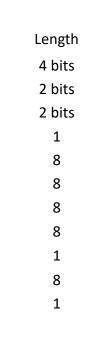
19

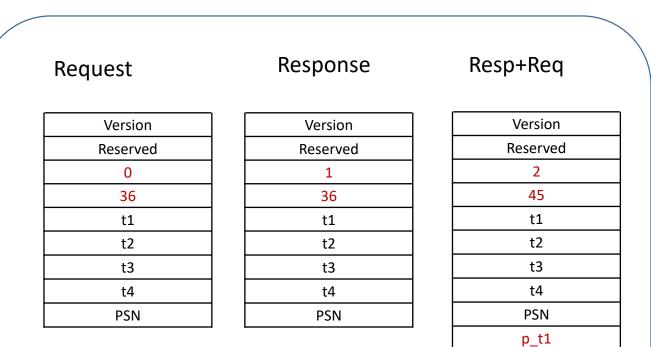
27

35

36

44


PDU Ethertype
Version
Subtype
Headroom Measurement
PDU


Length 2 4 bits 4 bits 65-529

Re-use CI Ethertype 89-A2 Subtype 0, CIM Subtype 1, Headroom Measurement Message

	Version	Į
	Reserved	
	Req/Resp/Resp+Req	
-	Length	
	t1	
	t2	
	t3	
	t4	
	PSN	
	p_t1(optional)	
	p_PSN(optional)	

p_PSN

Other Explanation for the Mechanism

- Measurement time will not exceed T*M
- Node only maintains PSN(i) for req message, no additional status need to be stored.
- Do not wait for a response message to be received before sending the next request message. Do not set timer for response message timeout.
- It may send redundant request messages, but the effect can be controlled by t, T and M.