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The Mobile and Portable Radio Research Group (MPRG) is a relatively new research 
group at Virginia Tech. Founded in the Spring of 1990, it is conducting basic and 
applied research in the areas of radio propagation measurement and prediction, 
communication system design using real-world channel models, and digital simulation of 
various modulation, diversity, and equalizer techniques. This paper provides an 
overview of the MPRG propagation research, and provides references for readers ' 
interested in further details of our work. 

I. INTRODUCTION 

The burgeoning wireless communications business has created an interesting problem for 
U.S. wireless manufacturers and service providers. Because the field of cellular radio 
and personal contrnunications is changing rapidly, and since the field involves system 
concepts seldom taught at universities, our nation's wireless companies are having 
difficulty finding entry level graduates with sufficient education to make an immediate 
contribution in research or design. Consequently, recruiters are forced to "raid" 
competing companies for more senior personnel, and resign themselves to spending 6 
months to 2 years training new graduates in the art and science of mobile radio. 

MPRG was founded last year to increase the research base in wireless personal 
communications, and to concurrently provide a quality education for graduate and 
undergraduate electrical engineering students who wish to pursue careers in mobile and 
portable radio communications. Our hope is to provide an educational experience that 
allows a new graduate to possess a solid understanding of the theory and practice of 
cellular radio. After one year, the results appear to be good. Five M.S.E.E. students 
have graduated with expertise in RF filter design, indoor radio propagation, adaptive 
noise-cancellation techniques, and .urban radio propagation prediction. Several analysis 
and simulation software tools . have been developed by MPRG researchers, and are 
presently being used internally and by several companies and universities for R&D. 
Furthermore, a graduate course dedicated to the topics of cellular radio and personnel 
communications was offered in Spring 1991, and enjoyed an enrollment of 34 students, 
making it the most popular graduate course in the EE curriculum at Virginia Tech last 
semester. When one considers that Virginia Tech has one of the largest EE programs in 
the U.S., it becomes clear that MPRG will be able to fulfill its mission of providing a 
significant number of graduates with a solid understanding of wireless communications. 
It is believed that these graduates will be able to make immediate contributions in 
industry and academia because of their interest and background. 

While the research and educational mission of MPRG concerns itself with more than 
just propagation, the group received its first research contracts in the area of 
propa.gation measurement and prediction. It seems there is extreme interest in 
propagation measurements and models for the proper design of emerging wireless 
services such as PCN. However, the U.S. wireless industry generally finds conducting 
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their own measurements and propagation research to be a time consuming and 
expensive task, and many industrial players view it as an expensive luxury which 
involves high priced consultants. Virgnia Tech has emerged as a sensible alternative, 
since MPRG has an established equipment arsenal and offers research expertise in the 
area of propagation measurement and prediction. As a university, we can provide 
resea.rch and measurement expertise at low cost. By pooling resources in an Industrial 
Affiliates program, we are generating useful tools and basic propagation models that can 
be shared by all Affiliates, and the resulting value of the research is much greater than 
the cost to an individual affiliate member. Since we are a research university, we 
publish our results so the entire research community can benefit from the knowledge 
base. 

This paper focuses on MPRG radio propagation modeling and prediction activities 
underway or recently completed. The paper presents results from cellular radio 
measurements in urban channels, microcellular measurements, and indoor 
measurements. New re.sults showing the effects of antenna polarization are also 
included. The paper concludes with an outline of future plans, which include integrating · 
the extensive propagation data bases into new tools for wireless system design. 

II. PROPAGATION MEASUREMENT AND PREDICTION 

A large part of MPRG work has dealt with measuring, and then sta.tistically modeling, 
the path loss and time dispersion of muHipath radio channels. Measurements and 
models haVe been made in many different environments: traditional urban cellular radio 
channels with base station antenna heights exceeding many tens of meters [1], [2], urban 
cellular radio channels with lower antenna heights, on the order of 15 - 20 meters [2], 
in-building channels within sports arenas, factories, and office buildings [3],[4], and open 
plan office buildings [5]. 

For urban mobile radio channels, it has been reported that the coherence bandwidth 
(the bandwidth over which the received signal strength will likely be within 90% of any 
other frequency from the same source) is between 10 kHz to 500 kHz [6]. Consequently, 
to sufficiently resolve multipath components that cause frequency selective fading, a 
channel sounder for urban channels should possess an RF bandwidth several times 
larger than the maximum coherence bandwidth. This thinking led us to use a 500 ns 
probing pulse (4 MHz RF bandwidth) in [1],[21. For indoor measurements, we have 
used probes that have durations on the order of 5 ns, thereby providing measurements 
than span over 400 MHz. (the . baseband pulse is DSB modulated so there is a 
bandwidth expansion factor of two at RF). Broadband antennas have been used to 
ensure no pulse spreading is attributed to impedance mismatch. Figure 1 illustrates 
important parameters when measuring time dispersion in multipath channels. The rrns 
delay spread (0'1") and excess delay spread (X dB) are good measures for comparing 
different channels and determining approximate bit error rates for digital modulation 
schemes. Figure 2 shows different time dispersion and path loss results for 
measurements reported in [2). The exponent value represents the best-fit average power 
law a.t which signal power decays with respect to a free space measurement at some 
close-in reference distance. The standard deviation 0' in dB represents the best-fit 
deviation from the large scale power law. Figure 3 shows the raw data from which the 
values in Figure 2 were computed. 

Our measurement systems use a simple time domain technique for easy assembly, test, 
and rapid deployment. They provide instantaneous channel measurements with 
excellent time delay resolution. Our approach, though, requires more peak power than 
the direct sequence systems used in [7], [8], and [9] for a specified coverage distance. 
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FIG. 3 TABLE INDICATES THE BEST FIT PATH 
SEVERAL MEASURED CHANNELS [2 ] 

Antenna 

lIeight (m) n 

lIamburg 40 2.5 

. Sluttgart 23 2.8 

Dusseldorf 88 2.1 

Frankfurt (PA Bldg.) 20 3.8 

Frankfurt (Dank Bldg.) 93 2.4 

Kronberg 60 . 2.4 

All (100 m) 2.7 

All (1 km) 3.0 

From Seidel, Rappaport, and 
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LOSS EXPONENT AND THE TIME DISPERSIVENESS OF 

Maximum T-R Muimum Rms Maximum 

",(dB) Separalion Delay Spread Exte.5li 

(lem) (ps) Delay 

'- Spread(ps) 
(IO"S) 

e.3 8.5 2.7 7.0 

9.6 6.5 5.4 1i.8 

10.8 8.5 4.0 15.9 

7.1 1.3 2.9 12.0 

13.1 6.5 8.3 18.4 

8.5 10.0 19.6 61.3 

11.8 10.0 19.6 51.3 

e.9 10.0 19.6 51.3 

Singh, lEE Electronics Letters 9/26/90 
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From the la.rge number of measurements collected in [1], we have developed a statistical 
simulator called SMRSIM (Simulation of Mobile Radio Statistical Impulse Response 
Measurements), which reproduces spatially-varying complex impulse responses 
comparable to measured data. MPRG graduate students Victor Fung and Weifeng 
Huang are using SMRSIM for design and simulation of modulation and equalization 
techniques. SMRSIM is used in addition to the worst case two-ray, Rayleigh fading 
model often used in simulation work [12]. Although the phases of individual signals were 
not measured, we use a physically-motivated synthesis technique described in [10] to 
reconstruct the phases and spatial variation of the phases in outdoor channels. Our 
model is different from Ha..c:;hemPs SURP model for the phases of individual multipath 
components, since we model the phases of each multipath component to be changin& 
deterministically from a randomly located fixed scatterer, rather than assuming [11 J 
that the phases of each multipath component are uncorrelated over less than a 
wavelength. The Doppler shift actually places an upper bound on the rate of change of 
phase of a discrete multi path component, and we use the Doppler information to 
determine the rate of change of phase. When CW fading signals are reconstructed from 
SMRSIM, the fading statistics, including level crossing rate, fade rate, and fading· 
distribution, are very representative of measurements.· 

Extensive indoor measurements are being conducted, with the long term goal of 
deriving site-specific models based on buildin& blue prints. Along the way, we have 
used the statistical modeling procedure in [10J to reproduce, on a 'personal computer, 
extensive factory impulse response measurements given in [13]. Also, more recent 
measurements [3], [4], and measurements reported in the literature [14] have been used 
to generate, on a computer, impulse response and path loss measurements in traditional 
partitioned office buildings, and soft partitioned (Herman-Miller office partitions) office 
buildings. Statistical models are useful for designing, on a computer, appropriate data 
rates or modulation, coding, diversity, and equalization methods. The simulator, called 
SIRCIM (Simulation of Indoor Radio Channel Impulse response Measurements), is a 
valuable research tool for MPRG equalization and antenna diversity work, and has been 
purchased by over 25 companies and universities. MPRG plans to update the software 
as more measurements become available, and as customer feedback dictates. A useful 
result from [3] is that propagation characteristics are very similar at both 1.3 GHz and 
4.0 GHz, which means the SIRCIM models (based on measurements around 1 GHz) will 
hold up to at least 4.0 GHz, and probably at somewhat higher frequencies. At the time 
of this writing, MPRG measurement capabilities are limited to frequencies below 4 
GHz, although new measurement equipment is being pursued for measurements at 
much higher frequencies. Typical examples of the data produced by SIRCIM are shown 
in Figure 4. Data files that contain the amplitudes, phases, time delays, and path loss 
for individual multipa.th components are produced by SIRCIM and written to disk for 
later use in simulation programs. 

Na.rrow band measurements show how the path loss exponent, and the deviation about 
the best-fit average path loss model, can be affected by building type, or location within 
a building. Table 1, extracted from [5], shows how that in different buildings, the floors 
can offer different values of attenuation. Figures 5 - 6 present measured attenuation 
factors for various obstacles in indoor environments [4],[5]. In [5], a simple two 
parameter statistical model was developed to model the loss due to each partition or 
each wall encountered between a transmitter and receiver inside an office building. 
Figure 7 shows a scatter plot of measurements made on three floors of two different 
office buildings, and the best-fit line which provides about a 4 dB standard deviation. 
The tra.nsmitter antenna was mounted 1.8 m above ground, and the receiver was 
located at desk height, shadowed by the soft partitions. Using a very simple model, it 
becomes possible to come close to predicting signal strength contours. Figures 8-10 

Submission Page 4 Dr. Th. Rappaport 



May 1991 

FIG. 4 

Submission 

10 ,...... 
c 
,~ 
u 5 I1J 

E .... 
::J 0 0 

..0 
0 
rn - 5 u 
'-/ 

.c 
0.-10 c 
al 
L... 
~ 

~ -15 
o 
c 
0' 

Vi -20 
u 
I1J 
> 

'r, - 25 

Doc: IEEE P802.11/91-60 

1 , 0 

0,0 

"5 0 

Excess Delay (ns) 

CW Fading 
Based on Wide Bond Impulse Responses 

.! 

u 
I1J 
~ - 30 L-__ ~ __ ~ ____ ~ __ -L ____ ~ __ -L __ ~ __ ~ 

-50 -25 o 
Distance{ em) 

25 50 

THESE WAVEFOlli1S ARE EXAMPLES PRODUCED BY SIRCIM. SIRCIM PROVIDES 
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TABLE 1: a) Floor Attenuation Factors measured in two office buildings 

Office 8uilding 1 : 

Through 1 noor 

Through 2 noors 

Through 3 noors 

Through 4 noors 

Office 8uildlng 2 : 

Through 1 noor 

Through 2 noors 

Through 3 noors 

Submission 

b) Best fit path loss exponents, and corresponding std. dev. for 
measurements in several types of buildings [5]. 

FAF(d8) a(d8) # locations 
n a(dB) # locations 

All BuDdings : 

AD locations 3.14 16.3 646 

12.9 7.0 104 
Same Floor f!.76 12.9 501 

Through 1 Floor 4.19 5.1 144 

18.7 2.8 18 Through 2 Floors 5.04 . 6.5 . 6~ 

Through 3 Floors 5.22 6.7 58' 
24.4 1.7 18 Grocery Store . 1.81 5.2 89 

27.0 1.5 18 
Retall store 2.18 8.7 137 

Office Building 1 : 

Entire Building 3.54 12.B 320 

Same Floor 3.27 11.2 238 
16.2 2.9 40 

·W. Wing 5th Floor 2.68 8.1 104 

27.5 5.4 42 Central Wing 5th 4.01 4.3 118 

W. Wing 4th Floor 3.18 4.4 120 
31.6 7.2 40 Office Building 2 : 

Entire Building 4.33 13.3 100 

Same Floor 3.25 5.2 37 
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FIG 6. MEASURED SIGNAL LOSS DUE 
TO COMMON OBSTRUCTIONS IN 
FACTORY BUILDINGS. 
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illustrate how the simple model, which assumes a loss of about 1.4dB/soft partition and 
2.4dD / concrete wall, can accurately predict coverage throughout the work space. 
Although this model is preliminary, it gives us hope that simple statistical models, used 
in conjunction with descriptions about the building topography, could be used to predict 
coverage areas and interference zones with good accuracy. MPRG researchers plan to 
continue a measurement campaign that will lead to accurate site specific models, and 
incorporate them into an automated system design tool that will optimally locate base 
stations for minimum interference and consequently maximum capacity. That is, we 
hope to exploit knowledge of the channel to improve system installation without 
meaSUIements. 

Work in [4] has shown that antenna polarization can playa big part in reducing the 
delay spread (i.e. improving the bit error performance). In [15j, Cox describes the 
Bellcore UDPC system as using polarization diversity to open, the eye in digital 
modulation techniques. Our work [4] shows that, indeed, polarization diversity can be 
used to select the best channel at a particular location. Our work also shows that 
circular polarized (C-P) directional antennas, when used in line-of-sight channels, can· 
provide a much lower delay spread than linear polarized antennas with similar 
directionality. We have also seen this on cross-campus links which may illuminate 
several buildings at a time. In outdoor links especially, it appears that when aligned off­
axis, directional C-P antennas offer much more multi path resistance than linear 
polarized antennas. We have good physical reasoning for this phenomenon, and believe 
it offers insight to appropriate antenna design for emerging PCN systems. Further, it 
indicales an accurate ray tracing prediction tool must consider polarization effects. ~ 

III. FUTURE WORK IN PROPAGATION 

Presently we are conducting narrow band measurements around the Virginia Tech 
campus. A first round of measurements was recently conducted by MPRG 
undergraduate researchers at 900 MHz, and these data are being compared with campus 
elevation and building maps to determine appropriate knife-edge and ray tracing 
modeling techniques. A recent paper shows the viability of ray tracing and shadowing 
for accurate propagation prediction for microcellular systems [16], and our initial models 
show that in fact only a few rays and simple diffraction methods can be used most of 
the time to get surprisingly good prediction (within 3 dB) of measured signals. Tom 
Russell and Kurt Schaubach are presently w'orking the problem, and are investigating 
good models that predict the effects of buildings that obstruct and reflect. 

Additional 900 MHz and 1900 MHz measurements around campus will provide data for 
building penetration into several buildings, floor-to-floor loss for different shaped 
buildings, and the correlation of signal strengths over small distances. Also, further 
measurements will enhance the partition models presented in (5], and will reveal 
additional modeling parameters. 

An enormous site-specific data base was gathered in [4), and subsequent work will 
determine ra.y-tracing and diffraction models for accurate signal strength and . time 
dispersion prediction within buildings. We will include polarization and antenna 
directivity in our models, and integrate them into a system design tool for indoor 
wireless communications. 
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