November 1992 IEEE P802.11-92/123

Mathematica Based Integrated MAC/PHY
Performance Simulation Framework
Including Capture Effect

Submitted By:
Larry Van Der Jagt
Knowledge Implementations, Inc.
32 Conklin Road
Warwick, NY 10990
Voice: 914-986-3492 FAX: 914-986-6441 EMail: KIILVDJ@attmail.com

Main 1Issues Addressed:
29.1 How Does IEEE 802.11 Do Simulation
9.1 MAC throughput & throughput probability
9.4 How will Standard address attenuation

@ Overview

A detalled computational framework 1s established for the execution of performance
simulations of Media Access Control State machines operated over Physical Layer
Entities. This framework allows the experimenter to locate stations geographically and
to assign attributes to those statlons. Some of the attributes that can be defined are
the station Location, TxPower, State and MessageProbabllity. A random sample from
a statistical model is used to simulate the path loss between stations. The path loss
matrix that results from this sampling is used to determine the signal level at each
station resulting from transmissions from other stations. If the signal to
interference ratio at the receiving station is sufficient (as determined by whether or
not it exceeds that value of the CaptureMargin parameter) the transmission is
considered successful. Each station maintains a StationTxQueue and a

StationRxQueue that tracks messages that it desires to send and that it recelves.

The filling and emptying of these queues is performed by traffic generating functions
and by a state machine model of MAC operation. In this document that state machine
model 1s a very simple ALOHA type model and the transmission environment is considered
static once the orignal sampling of the fading distributions are taken. The framework
is flexible enough, however, to be extended to other more complex MAC state machines
and dynamically varying channel models. There is also a provision in the framework to

enter station specific interference levels from external sources not related to the
transmission of other simulated stations.

In presenting this framework it 1is our intention to provide a common methodology for
analyzing MAC/PHY performance that can be executed on a varlety of platforms and be
within the expense budget of all IEEE 802.11 participants. We feel that the use of
Mathematica as a software tool accomplishes this goal. The code can be developed by
experimenters with PC, Macintoshes and workstations alike. When PC or Macintosh based
execution of scenarios runs out of gas, the members that are fortunate enough to have
workstations might assist those less fortunate in executing the simulations.
Mathematica is flexible enough to provide accurate modeling of real world conditions.

The only potential con is that people would have to learn Mathematica but this will be
a con for any simulation platform.

As has been the case with previous submissions we have made this submission executable,
when the corresponding package of support functions is avallable. Unlike previous
submissions, however, this support function package is not included with this

submittal. We would be happy to discuss terms for making these support functions
avallable to interested parties.

IEEE P802.11-92/123 1 L. Van Der Jagt

November 1992

IEEE P802.11-92/123

B Initialization

The process of executing a simulation begins
that are contained in the package RadioLAN®

will be described in the sections of the notebook that follow.

support package.

<<RadioLAN' RadioSupport"

with the loading of the support functions
Radio8upport. Each of these functions
The next cell loads the

In order to utilize this notebook it is necessary to initialize the fading statistics.

This is accomplished using the function SetFadingParameters.

This function takes

three parameters that are used in calculating the path loss as a function of distance.
The large scale fading is determined by using the first parameter and the second

parameter as the mean and standard deviation

of a normal distribution function and

taking a random sample of this distribution to be the n used to calculate the large
scale attenuation 1/d"“n where d 1s the distance at which the attenuation 1s desired.
The value of 1/d"n (expressed in dB) found as the large scale fading value is used as
the mean of a second normal distribution with a standard deviation equal to the third

parameter.

distance.

This second distribution models the local fading characteristics.
sample from this distribution is the value returned for the atten

A random
uation at a specific

The cell that follows sets the fading parameters for this specific instance of the

simulation.
example of the output of the fading model is

This cell must be executed prior to the start of the simulation.

An

provided in the following few cells. The

function GetAttenuation[d] is the actual function that 1s used when a sample of the

statistical model established with SetFadin
distance.

SetFadingParameters(3, .1,5];
Table[-1 GetAttenuation([d], (d4,5,100}]

gParameters 1s required for a given

{18.3963, 25.151, 35.0406, 22,2475, 36.0195, 22.9756, 33.5822, 32.1841, 37.9893, 39.8256, 27.2057, 39.5391, 47.2109, 41.358,

42.4815, 38.3741, 44.1254, 38.0362, 33.2227, 41.0843, 40.5207, 43.5098, 37.3255, 48.3905, 35.5756, 47.9233, 48.612,
47.2344, 46.3836, 36.1678, 42.5562, 45.5401, 37.2992, 40.5007, 49.9283, 51.631, 48.9692, 42.3184, 40.0866, 51.9977,
53.6759, 55.5021, 55.804, 45.015, 44.0488, 43.7306, 54.4328, 38.9679, 47.8289, 48.2987, 53.6021, 47.6136, 54.4817, 54.4211,
53.175, 45.86, 51.7246, 40.9437, 50.9567, 49.3227, 54.1231, 62.7712, 58.7104, 46.3249, 63.56, 56.524, 60., 49.9135,
49.6546, 56.5146, 54.9053, 55.0889, 57.3055, 60.5633, 50.3674, 61.0733, 56.0175, 55.4668, 52.2562, 56.0537, 53.8633,
64.3407, 55.7712, 70.6298, 40.8805, 54.8483, 63.9587, 59,5789, 55.4111, 69.197, 64.6123, 54.008, 67.3151, 61.7355, 51.7799,
61.0449})
ListPlot[%]
70} e
-
. " ¥ &8
60} i B e T
o s P
. %, o - > s "
50 -
~ -.-.. . . - - .
. . ® ‘~ o
o «
40 e ‘e ¢ . »
- e . .
. . *
30
-
.
* 20 10 60 80
-Graphics-

This simulation allows the experimenter the flexibility of setting up the station
population that will be involved in the simulation. Each station must have Location

[EEE P802.11-92/123 L. Van Der Jagt

November 1992 IEEE P802.11-92/123

(in a three dimensional space), TxPower (in dBmw), MessageProbability (the mean of a
Poission Process) and State (initial state of the station of the MAC state machine)
specified. The cells that follow specify these parameters for five stations. The
names of these stations are arbitrary, however, a list of those must be placed in a
list assigned to the symbol Stations in order for the simulation to operate. Also, a
station should not be named empty since this is the indicator of an empty transmit
queue. Further discussion of the transmit queue appears later in this paper. Other
station attributes that are initalized by the function initialize are the starting
state of the StationTxQueue and StationRxQueue, as well as the

Attempts, Success,Failure, and RetryCount attributes of each station.

Initialize:=(
Location({stationl]*=(1,1,1});
TxPower [Stationl]*=10;
MessageProbability([Stationl]*=.2;
State([Stationl] *=Idle;
StationRxQueue [Stationl]*={empty);
StationTxQueue[Stationl]*={empty};
Attempts[Stationl]*=0;

Success [Stationl]*=0;
Failure([stationl]*=0;

RetryCount [Stationl]*=0;

Location[Station2]*=(5, 5,5} ;
TxPower [Station2]4=10;
MessageProbability[Station2]4=.2;
State([Sstation2]+=Idle;
stationRxQucuc[stationzl“={ompty};
station!toucuo[station2]“={cmpty};
Attempts[Station2]+=0;
Success[Station2)4=0;
Failure{Station2]+=0;

RetryCount [Station2]+=0;

Location([Station3]~=(10,10,10};
TxPower [Station3]+=10;
MessageProbability[station3] *=.2;
State([Station3]*=Idle;
StationRxQueue[Station3] *={empty};
StationTxQueue[Station3] *={empty};
Attempts[Station3]+=0;

Success [Station3]*=0;
Fallure[Station3]+=0;

RatryCount [Station3]+=0;

Location([Stationd]~=(15,15,615};
TxPower [Stationd]*=10;
MessageProbability([Stationd]*=.2;
State[Stationd)*=Idle;
'stationRxQu-uo[station41‘=(cmpty};
StationTxQueue [Stationd]*={ampty};
Attempts[Stationd]+=0;

Success [Stationd]*=0;
Faillure[Stationd]+=0;

RetryCount [Stationd]*=0;

Location[Station5]4=(20,20,20};
TxPower [Station5]+=10;
MessageProbability[Station5]+=.2;
State[Station5]~=Idle;
StationRxQueue [Station5]*=({empty};
stationTxQucuo[stationS]“={empty};
Attempts[Station5]4=0;
Success[Station5]4=0;
Fallure[Station5]4=0;

RetryCount [Station5]4=0;)

IEEE P802.11-92/123 3 L. Van Der Jagt

November 1992 TEEE P802.11-92/123

The following cell executes the initialization function defined above and also buillds
the list of stations that is required by other processing steps.

Initialize
Stationc=(station1,8tation2,station3,stationl,stationS);

Once the station Location parameters and the fading parameters are set the function
BuildAttenuationTable can be called with the station list as a parameter and a table
of attenuations between stations will be calculated. 1In this calculation, an
assumption 1s made that reciprocity applies with respect to attenuation of the channel.
That is, the path loss between two stations is the same regardless of which station is
transmitting and which is receiving. This assumption leads to a symmetric matrix
representation for the attenuation between stations. The row and column numbers
represent which stations the attenuation value applies to. For instance, the
attenuation between the Stationl and Station2 in this example appears in both (row
one,column two) and (row two, column one). The cell that follows illustrates the
process of generating an attenuation matrix. The symbol Attenuation is assigned to
the calculated Attenuation Table for use by other routines, specifically, by
GenerateReceivelevels, the routine that calculates the receive level at each station

for transmissions originating at each other station and the overall level of receive
power at a given station.

Buildﬁttonuationrablo[stationl]

Attenuation=%;

0 -30.9655 -28.781 -35.0935 ~41.0809
-30.9655 [o] -21.3285 -42.8213 -43.4019
-28.781 -21.3285 0 -22.7665 -43.2612
-35.0935 -42.8213 -22.7665 0 -25.2425

-41.0809 -43.4019 -43.2612 -25.2425 0

Having established the parameters associated with the station configuration the next
task undertaken is to begin the process of simulating a transmission environment using
these stations. The function GenerateTraffic uses the MessageProbability
associlated with each station to determine how many messages a particular station will
generate during this time interval. A station name is selected using a uniform
discrete distribution from the posaible destinations stations that a particular station
has available to it (Note: all stations other than itgself in this model) for each
message that i1s generated. These station's names are pPlaced in a list and are appended
to the end of the list currently in existance as the StationTxQueue attribute of each
station. This queue consists of a list of destination stations for which these
messages are intended. The cells that follow illustrate the generation of the initial
set of traffic. Each successive call will append traffic to the end of the
StationTxQueue for each station. When operating in conjunction with state machines
that take messages from the beginning of StationTxQueue, the function
GenerateTraffic implements a FIFO style queue for the desired transmissions.

GenerateTraffic([Stations];
StationTxQueue[§]&[Stations]

{{empty}, {empty}, {station2, empty}, {Stationl, empty}, {empty}}

The function that evaluates the instantaneous receive level at a given station is
GenerateReceivelevels. This function monitors the state of all stations each time
it is executed and calculates the receive power of all stations that are in the
Originating and Responding state at all other stations. The level of receive power
at a particular station resulting from the transmission of another station are stored
in the matrix ArrivingTxPowerTable by GenerateReceivelevals. In order to avoid
negative infinity problems a minimum receive power level is established for all
stations. This level is set by setting the symbol MinPower. Also in order to
facilitate evaluation of how this set of stations will operate in the presence of
external noise sources the table ExternalNoisaTable of external noise values at
individual stations is required. This table is an array with one entry for the
external noise level at each station (Note: noilse 1in this array 1s expressed as power

IEEE P802.11-92/123 4 L. Van Der Jagt

November 1992 IEEE P802.11-92/123

in Watts, not dBmw) . GenerateReceivelLevels also calculates the array

ArrivingPowerTable that has one entry for each station representing the total power
arriving at the station from all sources including external noise. The following cell
sets the required parameters. The parameters CaptureMargin and ratrylimit are used

later in the notebook and are only initialized here for convenience. They are not used
by GenerateReceivelevels.

MinPower=-100;

ExternalNoiseTable=10*({-100,-100,-100,-100,~100}/10) .001;
CaptureMargin=12;
retrylimit=3;

@ The MAC/PHY State Nachines Used For This Simulation

Having established the support functions required, the functions that actually process
the station state machines can now be presented. The state machine model that has been
chosen for this simulation involves four states namely Originating,
WaitingForRasponse, Responding and Idle. The relationship between these states

and the transition conditions required to move from one state to another are detailed
in the following diagram.

RESPONDING

WAITING FOR
RESPONSE

B/1 ot Deatnalion OK and /1 st Destination OK and
Top of Destnaion TxOususs Desiingtien ArQueuss emply
Top of Sourcs RxOueue " increment Amamots and
Oslete RxQuaus and TxQusus Add Source b RrQueue
Entries and increment of Dastinaion
Suooess of Deatination

These state machines are provided as an example and are not being suggested as typical
of the MAC state machines we may ultimately chose for the standard and can readily be
modified to reflect actual MACs being considered. The execution of the state machines
proceeds in three phases. During the first phase, stations that need to go into a
transmitting state (Originating or Responding) make their transition to that state.
During the second phase, receiver signal to interference levels are calculated to
determine 1f the reception will be successful. For this example a full duplex PHY is
assumed that can remove the impact of its own transmission from the receive signal. It
is also assumed that the MAC can only deal with one item on the StationRxQueua at a
time and that if there is already an item on thils queue the transmission will fail
regardless of the signal to interference ratio. It is during this second phase of
operation that decisions are reached with respect to whether a particular transmission
succeeds or fails. Finally, a third phase of operation results in stations
transitioning back to Idle having evaluated the reception conditions. As currently
configured every transmitted message 1is responded to by the destination station and

IEEE P802.11-92/123 5 L. Van Der Jagt

November 1992 IEEE P802.11-92/123

fallure of either the basic message or the response 1s considered a fallure of the

overall transmission, resulting in incrementing of the originating stations Failures
attribute.

A number of support functions are used in the execution of the state machines. The
first of these is CheckForReceive. This function accepts two parameters, source and
destination. It begins by incrementing the Attempts attribute of the source station.
Next it calls GenerateRsceivelLevels to test to see if the transmission will be
successful based on the signal to interference conditions. It also checks to make sure
that the StationRxQueue of the receiving station is empty. If all conditions for
successful transmission are satisfied the name of the source is placed on the
destination's StationRxzQueue by a call to the function GenerateMessage. If
transmission conditions will result in the destination station not being able to
successfully receive the transmitted message the address of the source is not placed on
the destination StationRxQueue and subsequent processing will reveal a failure of the
source to receive a response from the destination.

The function CheckForResponse is used by a station in the Responding state to
determine if the response will be successfully received by the station being responded
to. The processing in this function is very similar to that performed by
CheckForReceive, however, 1f the transmission is found to be successful a single item
is deleted from the appropriate Tx and Rx queues and the source station's Success
attribute is incremented. If the transmission is not successful the Rx queue of the
responder is cleared and the Tx queue of the destination station 1s left intact and the
Fallures attribute of the destination station is incremented.

The function defined in the following cell executes the state machines described in the
previous paragraphs.

ExecuteStatelachine [stationlist_):=
(*All Stations are evaluated to put them in transmitting states if requiredt)
(*Firet test to sea if any stations are in idle needing to go to respoadingt)
(Do(If[{((testtable=Table{{State([#1][(1]],StationRxQueue (#11[[4,1]])alstationlist],
{4,1,Length[staticalist]}]) [[k,1])]==m=Idle) |1 (testtable(f [k, 1] J===WaitingForResponse))
44 (tasttable((k, 2] |=lmempty) ,
State{stationlist[([k)]]*=Responding, (}], (k, 1,Length(stationlist])];
(*Mext chack to see if any statiom is in idle needing to go to originatingt)
Do[If[((testtable=Table[{state(#1][[1]],8tationTxQuene [#1]1[[4,1])))& [stationlist],
(1,1, Length(stationlist]}]) [(k,1]]===Idle)ss {testtable[(k,2]]=lmampty),
State(statiocnlist[[k]]])“=Originating, {}], (k,1, Length[stationlist]}]:
Print (State[#)s[stationlist]]);
(*¥With stations in transmitting states evaluate 8/1 conditions at destinations+)
Do[Switah|[State(d1])& [stationlist][([i]],
(*Mow check to see if s/i conditions at destinations allow reception from orginatorsw)

Originating, CheckForReceive [
stationlist([1i]],StationTxQuene [#1)s(stationlist] [[4,1]], stationlist],

(*Now check to see if s/i conditions at dastinations allow reception from responderst)

Responding,CheckForResponse |
stationlist[[1)], StationRxQuene (#1][[4, 1))& (stationlist],stationlist],

{(*Any Station not in transmitting state is dealt with laterw)
True,{}],{i,1,Length([stationlist]}];

(*Now that impact of all transmitters is defined move to next statet)
Do[3witch[State([#l]s [stationlist][[4]1],

(*If Orginating go to idlet)

Originating, State [stationlist{(1]]]) “=WaitingForResponse,

IEEE P802,11-92/123 6 L. Van Der Jagt

November 1992 IEEE P802.11-92/123

(*If Responding go to idle*)

Rasponding, Btate (stationlist[[1]]]*=Idle,

(*If Waiting go to idle)

WaitingForResponse, State(stationlist[[1]]]“=Idlae,
(*All Other Stations stay in as isv®)

True,{}], (1,1,Length(stationlist]}])

@ Simulation Execution and Results

Finally, the stage is set for performing an actual simulation. The only other function
that 1s used that has not been discussed previously is the function MonitorRetries.
This function accepts two parameters, one being the last state of all the
StationTxQueues, and the other being the stationlist that is used to generate the
current state of the StationTxQueues. This function monitors the transmit queues and
discards messages that faill to be transmitted a retrylimit number of times. This
keeps the simulation from giving pessimistic results when one station can not be
reached by another station under any interference situation and prevents deadlocks
associated with the only one entry on the Rx queue limitation that has been imposed on
the simulated MAC. The following cell executes 10 cycles of the defined simulation and

provides diagnostic information as it is executing as well as summary statistics upon
completion.

Two sets of simulation output are presented here, one for a -20 dB capture margin such
as you might expect to see in Spread Spectrum systems with 30 dB of processing gain and

one for a 12 dB capture margin such as you might expect to see in a Non-Spread Spectrum
system,

Initialise
lasttraffio=StationTxQueve [§1]& [Stations];
Do[{MonitorRetries[lasttraffic, Stations];
GenerateTraffic[Stations);
lastteaf ﬂo-ltnt.mmu- i ll] &[Stations];
Priot[“Slot Womber ",
Print [ftationTx(ueuna ['l.] & I Btations]]:

Print ["Stationkxfluens lutiomﬁ\nw [(fla(statioms]];
Print(*Actempts ﬁ:".pe“" 16 (Btations))
!]] &[8tations]];
Print(*8 . o{8)4 (stations]))
Prinot ("Failure ,nuunu:a ltnt:ionl]]:
Print [“Retries *;PatryCount[#]&[Stationn])’

totaliterationsen;

ExecuteStateMachine{8tations]), (n,1,10)}
P:int'["lhuaq- ‘D:obnhtuthn .H-u-ml?mbabi.utg[t] &(Stations]])
Print ["Ca

Ovonnlf. ci-m: [.lpp:l.y m.u lum-.unpg] &[8tations]]/(totaliterations-2)];
Print ("Overall Efficency ' ¥

SuccensEfficen 1y (Pluas, lm:cu- [#)a[8tationa)] /Apply [Plus, Attempts [#]4 [Btations]]//H;
Print [“Success Efficency ' %

TailureRfficency=Appl {P:I.u,ruluro[i]s{stlt:i.ou-]}/ ly [Plus, Attempte [#]4 [8tations]]//N;
Print ["Failure ltﬂc-zay ' §] Avply

Slot Number 1
{ {(empty}, {empty}, {Station2, empty}, {empty}, {Station3, empty}}

StationRxQueue {{empty}, {empty}, {empty}, {empty}, {empty}}
State {Idle, Idle, Idle, Idle, Idle}

Attempts {0, 0, 0, 0, 0}

Success {0, 0, 0o, 0, 0O}

Failure {6, o, 0, 0, 0O}

Retries (0, 0, 0, 0, 0}

{Idle, Idle, Originating, Idle, Originating)
Evaluating TX Conditions between Station3 and Station2
Evaluating TX Conditions between Station5 and Station3
Slot Number 2

{{empty}, {empty}, {Station2, empty}, {empty}, {Station3, empty}}

StationRxQueue ({empty}, {Station3, empty}, (Station5, empty}, {empty},
{empty}}
State {Idle, Idle, WaitingForResponse, Idle, WaltingForResponse)
Attempts (0, 0o, 1, 0, 1}
Success {o, o, o, 0, 0}

IEEE P802.11-92/123 7

L. Van Der Jagt

November 1992

Failure {0, 0, 0, 0, O}

Retries {0, o, 1, 0, 1}

{Idle, Responding, Responding, Idle, WaitingForResponse}
Evaluating Response Conditions between Station2 and Station3
Evaluating Response Conditions between Station3 and Station5
Slot Number 3

{{empty]}, {empty}, {empty}, {empty}, {empty}}

StationRxQueue {{empty}, {empty}, {empty}, {(empty}, {empty}}
State {Idle, Idle, Idle, Idle, Idle}

Attempts {0, 0, 1, 0, 1}

Success {o, 0, 1, 0o, 1}

Failure {0, 0, 0, 0, 0}

Retries {o, o, 0, 0, 0}

{Idle, Idle, Idle, 1dle, Idle}
Slot Number 4

{{Station5, empty}, {empty}, {empty}, {empty}, {empty}}

StationRxQueue {{empty}, {(empty}, (empty}, {empty}, {empty}}
State {Idle, Idle, Idle, Idle, Idle}

Attempts {o, 0, 1, 0, 1}

Success {0, 0, 1, 0, 1}

Failure {o, o, o, 0, 0}

Retries {0, 0, 0, 0, 0}

r r
{Originating, Idle, Idle, Idle, Idle}
Evaluating TX Conditions between Stationl and Station5
Slot Number 5

{{Station5, Station2, empty}, {(empty}, {empty)}, {empty}, {empty})

StationRxQueue {{empty}, {empty)}, {empty)}, {empty}, {Stationl, empty}}
State {WaltingForResponse, Idle, Idle, Idle, Idle}

Attempts {1, o, 1, 0, 1}

Success {6, o, 1, 0, 1}

Failure {o, o, 0, 0, 0}

Retries {1, o, 0, 0, 0}

{WaitingForResponse, Idle, Idle, Idle, Responding}
Evaluating Response Conditions between Station5 and Stationl
Slot Number 6

{{Station2, empty]}, (empty}, {empty}, {empty}, {empty}]}

StationRxQueue {(empty}, {empty}, {empty}, {empty}, {empty}}
State {Idle, Idle, Idle, Idle, Idle}

Attempts {1, o, 1, o0, 1}

Success {1, o, 1, 0, 1}

Failure {o, 0, 0, 0, 0}

Retries {6, o, o, 0, 0}

r ’
{Originating, Idle, Idle, Idle, Idle}
Evaluating TX Conditions between Stationl and Station2
Slot Number 7

{{Station2, empty}, {empty}, {empty}, {empty}, (Stationd, empty}}

StationRxQueue {{empty}, (Stationl, empty}, {empty}, {empty}, {empty}}
State (WaitingForResponse, Idle, Idle, Idle, Idle}

Attempts (2, 0, 1, 0, 1}

Success {1, o0, 1, 0, 1}

Failure {o, 0, 0, 0, 0}

Retries {1, o, 0, 0, 0}

{WaitingForResponse, Responding, Idle, Idle, Originating}
Evaluating Response Conditions between Station2 and Stationl
Evaluating TX Conditions between Station5 and Stationd

Slot Number 8

{{empty}, {empty}, {empty}, (Station3, empty}, {(Stationd, empty}}

StationRxQueue {{empty}, {empty}, {empty}, {Station5, empty}, {empty}}
State {Idle, Idle, Idle, Idle, WaitingForResponse}

Attempts {2, 0, 1, 0, 2}

Success {2, 0, 1, 0, 1}

Failure {o, 0, 0, 0, 0}

Retries {0, 0, 0, 0, 1}

{Idle, Idle, Idle, Responding, WailtingForResponse}

Evaluating Response Conditions between Station4 and Station5
Slot Number 9

{{empty}, {empty}, {empty}, {Station3, empty}, {empty}}

StatlonRxQueue {{empty}, {emptyl}, {(empty}, (empty}, {empty}}
State {Idle, Idle, Idle, Idle, Idle}
Attempts {2, o, 1, 0, 2}

IEEE P802.11-92/123 8 L. Van Der Jagt

IEEE P802.11-92/123

November 1992 IEEE P802.11-92/123

Success {2, 0, 1, 0, 2}
Failure {0, 0, 0, 0, 0}
Retries {0, o, 0, 1, 0}

{Idle, Idle, Idle, Originating, Idle}

Evaluating TX Conditions between Station4 and Station3
Slot Number 10

{{station2, empty}, {empty}, {empty}, (Station3, empty}, {(empty}}

StationRxQueue {{empty}, {empty}, {Stationd, empty}, {empty}, {(empty}}
State (Idle, Idle, Idle, WaitingForResponse, Idle}

Attempts {2, o, 1, 1, 2)

Success {2, 0, 1, 0, 2}

Failure {0, 0, 0, 0, 0}

Retries {o, 0, 0, 2, 0}

{Originating, Idle, Responding, WaitingForReaponse, Idle}
Evaluating TX Conditions between Stationl and Station2
Evaluating Response Conditions between Station3 and Stationd
Message Probabilities {0.2, 0.2, 0.2, 0.2, 0.2}

Capture Margin -20

Overall Efficency 0.75
Success Efficency 0.857143
Failure Efficency 0

Initialisme
lasttraffio=gt utimmum}n]i [Stations] ;
Do[(MoaitorRetries[lasttraffic, Stations];
GanerateTraffic([Stations];
lutmff 1u-lmtonmu ne [ilij &{8tations];

int [“8lot
!:!.nt [lutson?m-u [#1)a lﬂ;ltlonc) ' i
Print 'lt.lt.i.mlaﬂu.uo *,8tationRxQueva([f#)a([Stations]]);
Print ["State “,8tate[#]&[Btations]];
n:mtl-nu-pe. *, Attempta [§] 6 [Stations]];
{ "8 [# t[ll:attm”'
hint "Failure o l'l!.lun [#]&[stations
Print ["Retries RatryCount [#]&(Stations]];
totaliterations=n;

EzacuteftateMachine [Stations]), (n,1,10)]
Print ["Message !nbl’:!.ut.!.n ,H-nmm:nb-biutg[.]a [8tations]]

Print ["Capture Ma Captu.

OverallRfficie (Apply tnnl, Sm.lll‘] &[Stations]]/(totaliterations-2)];

Print (“Overall Rfficen ¥

SuoccessBffioe: ly [Plus, lmcu-s (#]s[8tations]] /Apply [Plus, Atempts [§] & [Statiocns]]//N;
Print ["Buccess Ef ", %)

FailureRffice Iﬂ;hu. !nlm [#)a[stations)] /Apply [Plus, Attempts [#] s [Stations]]//M;
Print(["Faillure 8]

Slot Number 1
{{empty}, {empty}, {empty}, {empty}, {empty}}
StationRxQueue {{empty}, {empty}, (empty}, {empty}, {empty})

State {Idle, Idle, Idle, Idle, Idle}
Attempts {0, 0, 0, 0, 0}
Success (o, o, 0, 0, 0}
Failure {0, o0, 0, 0, 0O}
Retries {0, 0, o, 0, 0}

{Idle, Idle, Idle, Idle, Idle}
Slot Number 2

{{empty}, {empty)}, {Stationd, empty}, {Stationl, empty}, {empty}}

StationRxQueue {{empty}, {empty}, {(empty}, {empty}, (empty}}
State {Idle, Idle, Idle, Idle, Idle}

Attempts {o, 0, 0, 0, 0}

Success {0, 0, 0, 0, 0}

Failure {0, o, 0, 0, 0}

Retries {o, 0, 0, 0, 0}

{Idle, Idle, Originating, Originating, Idle}

Evaluating TX Conditions between Station3 and Stationd

Evaluating TX Conditions between Station4 and Stationl

Slot Number 3

{{empty}, {empty}, {Stationd, Stationd, empty}, {Stationl, empty}, {Station3,
empty}}

StationRxQueue {{empty}, (empty}, {empty}, {Station3, empty}, {empty}}
State {Idle, Idle, WailtingForResponse, WaltingForResponse, Idle}
Attempts {0, 0, 1, 1, 0}

Success {0, o, 0, 0, 0}

Failure {6, 0, 0, 1, 0}

Retries (o, 0, 1, 1, 0}

{Idle, Idle, WailtingForResponse, Responding, Originating}
Evaluating Response Conditions between Stationd and Station3
Evaluating TX Conditions between Station5 and Station3

IEEE P802.11-92/123 9 L. Van Der Jagt

November 1992 IEEE P802.11-92/123

Slot Number 4

{{empty}, {empty}, {(Stationd, Station4, empty}, {Stationl, StationS, emptyl},
{Station3, empty}}

StatlonRxQueue {{empty}, {empty}, {empty}, {empty)}, {(empty}}
State {Idle, Idle, Idle, Idle, WaitingForResponse}
Attempts {6, 0, 1, 1, 1}

Success {0, 0, 1, 0, 0}

Failure (0, 0, 0, 1, 1}

Retries {0, o0, 0, 2, 1}

4
{Idle, Idle, Originating, Originating, WaltingForResponse}
Evaluating TX Conditions between Station3 and Station4
Evaluating TX Conditions between Stationd and Stationl
Slot Number 5

{{empty}, ({Station3, Station5, empty}, (Stationd, Station4, Station5, empty},
{stationl, Station5, empty),

{Station3, Stationl, empty}}

Stat ionRxQueue {{empty}, {(empty}, {empty}, (Station3, empty}, {emptyl}}
State {Idle, Idle, WaitingForResponse, WaitingForResponse, Idle}
Attempts {o, o0, 2, 2, 1}

Success {o, o0, 1, o0, 0}

Failure {0, o0, 0, 2, 1}

Retriles {o, o, 1, 3, 2}

{Idle, Originating, WaitingForResponse, Responding, Originating}

Evaluating TX Conditions between Station2 and Station3

Evaluating Response Conditions between Stationd4 and Station3

Evaluating TX Conditions between Station5 and Station3

Slot Number 6

{{empty}, {Station3, Station5, empty}, {Station4, Stationd, Station5, empty},
{StationS, empty)}, {Station3, Stationl, empty}}

Stat ionRxQueue {{empty}, {(empty}, {empty}, {empty}, {empty}}

State {Idle, WaltingForResponse, Idle, Idle, WaitingForResponse}
Attempts {o, 1, 2, 2, 2}

Success {o, o, 1, o0, 0}

Failure {0, 1, 1, 2, 2}

Retries {o, 1, 2, 0, 3}

{Idle, WaitingForResponse, Originating, Originating, WaitingForResponse}
Evaluating TX Conditions between Station3 and Stationd

Evaluating TX Conditions between Station4 and StationS

Slot Number 7

{{empty}, {Station3, Station5, empty}, {(Stationd, Station4, Station5, empty},
{Station5, empty)}, {Stationl, empty}}

StationRxQueue {{empty}, {empty}, {empty}, {Station3, empty}, ({(Stationd,
empty}}

State {Idle, Idle, WaitingForResponse, WaitingForResponse, Idle}
Attempts (0, 1, 3, 3, 2}

Success {0, 0, 1, 0, 0}

Failure (0, 1, 1, 2, 2}

Retries (o, 2, 3, 1, 0}

{Idle, Originating, WaitingForResponse, Responding, Responding}

Evaluating TX Conditions between Station2 and Station3

Evaluating Response Conditions between Stationd4 and Station3

Evaluating Response Conditions between Station5 and Stationd

Slot Number 8

{{station3, empty}, {Station3, Station5, empty}, {Stationd, Station5, empty},
{empty}, {Stationl, emptyl}

StationRxQueue {{empty}, {empty}, {empty}, {empty}, {empty}}
State {Idle, WaitingForResponse, Idle, Idle, Idle}
Attempts {0, 2, 3, 3, 2}

Success {6, 0, 1, 1, 0}

Failure {6, 2, 2, 2, 2}

Retries {0, 3, 0, 0, 1}

{Originating, WaitingForResponse, Originating, Idle, Originating}

Evaluating TX Conditions between Stationl and Station3

Evaluating TX Conditions between Station3 and Station4

Evaluating TX Conditions between Station5 and Stationl

Slot Number 9

{{station3, empty}, {Station5, empty}, {Stationd, Station5, empty}, {Statilonl,
empty}, {Stationl, empty}}

Stat ionRxQueue {{empty}, {empty}, {Stationl, empty}, {empty}, {empty}}

IEEE P802.11-92/123 10 L. Van Der Jagt

November 1992

IEEE P802.11-92/123

State {WaitingForResponse, Idle, WaitingForResponse, Idle,
WaitingForResponse}

Attempts {1, 2, 4, 3, 3}

Success {o, o0, 1, 1, 0}

Failure {0, 2, 3, 2, 3}

Retries {x, o0, 1, 0, 2}

{WaitingForResponse, Originating, Responding, Originating, WaitingForResponse}
Evaluating TX Conditions between Station2 and Station5

Evaluating Response Conditions between Station3 and Stationl

Evaluating TX Conditions between Station4 and Stationl

Slot Number 10

{(station3, empty}, {Station5, Station4, empty}, {Stationd, Station5, Stationd,
empty}, {Stationl, emptyl},

{Stationl, Stationl, emptyl}}

Stat ionRxQueue {{empty}, {empty}, {empty]}, {empty}, {empty}}

State {Idle, WaitingForResponse, Idle, WaltingForResponse, Idle}
Attempts {1, 3, 4, 4, 3}

Success {0, 0, 1, 1, 0}

Failure {1, 3, 3, 3, 3}

Retries {2, 1, 2, 1, 3}

{Originating, WaitingForResponse, Originating, WaltingForResponse, Originating}
Evaluating TX Conditions between Stationl and Station3

Evaluating TX Conditions between Station3 and Stationd

Evaluating TX Conditions between Station5 and Stationl

Message Probabilities (0.2, 0.2, 0.2, 0.2, 0.2}

Capture Margin 12

Overall Efficency 0.25
Success Efficency 0.111111
Faillure Efficency 0.833333

B Conclusion

This document has presented an accurate framework for evaluating MAC/PHY performance.
. This framework is flexible enough to handle many differing simulation needs and

scenarios. By way of example,

a very brief picture (insufficent in detall) of the fact

that Capture Effect can not be ignored in simulations of throughput efficency has been
shown. The requested action from this submittal is to close issue 29.1 and to direct
the parties working on channel models and MAC/PHY throughput presentations to begin

working with a common set of tools developed in Mathematica.

IEEE P802.11-92/123

11

L. Van Der Jagt

