Doc: IEEE P802.11 - 93/94a

Power Management

The importance of Power Management provisions in the MAC

By: Wim Diepstraten NCR.

Wireless Network Applications

- * Mobile computing
 - Battery operated Notebooks and Notepads.
 - Need desktop like LAN speed connectivity.
 - File transfer, Data-Base access, and Email.
 - Major NOS support.
- * Messaging/Transaction Systems
 - Small Extreme Low Power devices.
 - PDA's, scanners, personal communicators.
 - Little traffic, Short (voice) messages and Mail.
 - Do not need all Network services, but need an infrastructure.
- * Current (wired) LAN applications
 - Wireless to provide high flexibility.

Submission

Slide 1

July 1993

Doc: IEEE P802.11 - 93/94a

Power Requirements.

- * Notebooks / Notepads.
 - Running on rechargeable batteries.
 - Battery life from 2-4 Hrs now, 4-8 Hrs future.
 - Power consumption 500-1500 mAh.
 - Impact Connectivity function < 20 % Battery life.

This allows for 50-100 mAh for the connectivity function.

Power Requirements.

- * Extreme Low Power Devices.
 - Running on few small AA or AAA cells (2000/250 mAh)
 - Battery life for weeks to months.
 - Assume 8 weeks @ 8 hrs/business day.
 - Assume Impact Continuous Connectivity function < 50% Battery life.

This allows for .4 - 3 mA for the connectivity function.

Submission

Slide 3

July 1993

Doc: IEEE P802.11 - 93/94a

Transceiver Power Consumption

- * Transmit Power consumption:
 - Relate to Tx-Level.
 - Very low duty cycle < 1% of Power budget.
 (assuming 1MByte File/15 minutes and 25% Power efficiency)
 - Tx-Level Control is for medium efficiency only.
 - Peak current is other limitation.
- * Rx Power consumption:
 - Relate to bandwidth, linearity and complexity.
 - Idle situation dominates Power Consumption.
 - Idle consumption same order as Rx Power.
 - Assume 150 mA as practical example.

Power Management methodology

- * Turn transceiver on only when needed.
 - Already the case in Transmitter.
 - Should also be done in the receiver.
- * Put transceiver in sleep mode most of the time.
 - Without loss of service.
 - Use only minimum power in "Doze" state.
 - With adequate throughput / Response time.

Problem: Current Networks require the receiver to be active continuously.

Solution must be independent of any application knowledge.

Submission

Slide 5

July 1993

Doc: IEEE P802.11 - 93/94a

Sleep duty cycles needed

- * Notebooks/Notepads:
 - Need Moderate sleep duty cycle in order of 10-20%
- * Extreme Low Power devices:
 - Need extreme low duty cycle of few ms/sec.
 - Transceiver can only turn on once per tens of seconds.
 - This does not combine with LLC-2 timers, so no LLC-2 protocol support possible.
 - Possibly no Broadcast possible.

MAC Provisions needed:

- * MAC transmitter need to buffer packets when receiver is in sleep mode.
- * Transmitter and receiver needs to be synchronized.
 - Transmitter needs to know when Rx is Awake.
 - Rx needs to be Awake when relevant data is expected.
 - Accurate synchronization needed to allow extreme low Power operation.

Submission

Slide 7

July 1993

Doc: IEEE P802.11 - 93/94a

Related Issue's

- * Network Operating System sensitivities
 - "Connection Alive" monitoring.
 - Out-of-range consequences.
- * Network Operating Systems need to reduce their sensitivity levels for such conditions to make them more robust for service disruptions that are not uncommon within a (mobile) Wireless environment.
- * Interaction of MAC Power Management with Device Power Management.

Conclusions:

- 1 Power (consumption) Management is a crucial function for the 802.11 MAC.
- 2 Transmit power consumption has a very insignificant effect on battery life. Therefore Transmit Power Control is not done for power conservation, but its function is to optimize medium re-use.
- 3 The idle traffic situation is the most dominant factor for power consumption.
- 4 Different Power Management levels are needed to support a large range of applications.
- 5 Stations must be able to turn off their receivers for most of the time to meet the power requirements of most power critical devices.
- 6 Power Management scheme should be independent of any application knowledge.
- 7 Provisions in the MAC are needed to support sleeping stations without loss of service.
 - Temporary buffering of packets for sleeping stations.
 - Synchronization between transmitter and receiver.
- 8 Different Power Management levels have impact on the MAC services supported.
- 9 Extreme Low Power Devices can only use LLC-1 services, without Broadcast.
- 10- Network Operating Systems show different sensitivity for service interruptions.