July 1993 Doc: IEEE 802.11-93/95

WMAC Protocol

More Details

Synchronization and Power Management Mechanisms

Wim Diepstraten Greg Ennis

NCR

Symbol Technologies

July 1993

Doc: IEEE 802.11-93/95

Background

- Represents joint contribution to IEEE by Symbol and NCR (competitors driven towards compatibility by customers)
- Different from both companies' current products
- Basic CSMA/CA and Time-Bounded aspects already presented
- Focus here on synchronization and power management

Wireless Network Architecture

- Infrastructure mode: supports single channel PHY
- Ad-Hoc mode: can overlap with Infrastructure

WMAC Protocol Details

Slide 2

July 1993

Doc: IEEE 802.11-93/95

WMAC Protocol Characteristics:

- Distributed Access Protocol based on CSMA/CA + Ack
 - Efficient medium sharing
 - Robust for interference
 - Support Asynchronous and Time Bounded Services
- Support single and multiple channel environments
- Support Infrastructure and Ad-Hoc networks
- Multiple systems can overlap in the same channel
- Includes specific provisions for Power Management

Applications Supported

Mobile computing

• Support Low Power operation for battery operated high speed data transfer devices like Notebooks

Messaging/Transaction Systems

• Support extreme low power devices like PDA's that can use the network infrastructure

Current wired LAN applications

- Support wireless network for flexibility
- Support major network operating systems

Time-bounded services

WMAC Protocol Details

Slide 4

July 1993

Doc: IEEE 802.11-93/95

Power Management Principles

- Application independence
- Turn transceiver off (sleep mode) as much as possible
- Transmitter buffers frames and periodically transmits short announcements to receivers
- Receivers need only listen for announcements until presence of incoming frame is detected
- Transmitter and receiver synchronization allows for substantial power conservation with acceptable performance

Power Management Methodology

- Synchronize all stations to a "Timing Coordinator"
 - AP in Infrastructure Networks, or an assigned station in ad hoc
- Stations can be in different PM-modes and can dynamically switch modes

- CAM:

Continuous Active Mode

- **PSM**:

Power Save Mode (various flavors)

- Transmitters know the PM-mode of the receivers
- Transmitters send "Traffic Information Message" (TIM) at regular intervals indicating buffer status

WMAC Protocol Details

Slide 6

July 1993

Doc: IEEE 802.11-93/95

Synchronization Methodology

- Free running Timer in "Timing Coordinator"
- Timestamp transmitted at regular intervals (in TIM)
 - Timestamp is timer copy at actual medium access time
 - All receivers within BSA load timestamp (plus modem delay correction) in local timer
- The TIM interval Timer keeps running in "Doze" state

Synchronization

WMAC Protocol Details

Slide 8

July 1993

Doc: IEEE 802.11-93/95

Station Power Save States

• Transmit State: Transmitter is turned On

• Awake State: Receiver is fully powered and capable

of receiving

• Doze State: Transceiver is not able to transmit or

receive, and consumes very low power. TIM interval Timer active.

Stations using Power Save mode will cycle from *Doze* to *Awake*, only when relevant traffic is expected, or just before a transmission starts. CAM stations will be continuously *Awake*.

Infrastructure Power Management

- AP buffers the traffic for stations that are in Power Save Mode
 - AP knows the PM-mode per station (PM-bits in Header)
 - Broadcast traffic is also buffered
- Two different Power Save Modes available:
 - PSNP

Power Save Non-Polling

- PSP
- **Power Save Polling**
- AP broadcasts the buffering status at regular intervals
 - In separate TIM packet every 20-50 msec
 - Possibly embedded in Frame Header as element
 - DTIM (Delivery TIM) occur every 50-200 msec

WMAC Protocol Details

Slide 10

July 1993

Doc: IEEE 802.11-93/95

Announcing Buffered Frames

Power Save Non-Polling Operation

- AP will send buffered broadcast and buffered frames for PSNP stations immediately after DTIMs
- Station wakes up just before a DTIM is expected
- DTIM contains a map of all stations with buffered traffic (Coded with Station ID (SID code))
 - When no traffic buffered for that station and no broadcast then station can go back into "Doze" state
 - Otherwise station keeps awake until frame is received
 - "More" bit in Header indicates more traffic buffered
- A station can switch to the active mode to allow transfer of subsequent frames without buffering delay

WMAC Protocol Details

Slide 12

July 1993

Doc: IEEE 802.11-93/95

Power Save Polling Operation

- Each such station independently decides how frequently it must listen for TIMs
- AP will send buffered frames for PSP stations only in response to a Poll frame from that station
 - If nothing buffered, go back to "Doze" state
 - Otherwise station generates a Poll to the AP
- Power conservation/performance tradeoff
- "More" bit indicates additional frames

Power Save Polling Operation (cont'd)

- Sleep interval can dynamically change to anticipate traffic patterns
- PSP stations that want Broadcast service need to listen to every DTIM, and stay awake until Broadcast traffic is transmitted
- Extreme Low Power Stations can choose to wake-up only every n-th TIM (perhaps foregoing broadcast service)
- Stations anticipating traffic can enter a "fast listen" mode (every TIM)

WMAC Protocol Details

Slide 14

July 1993

Doc: IEEE 802.11-93/95

Infrastructure Operation

Example: DTIM at every 3 TIM intervals.

Ad-Hoc Power Management

- No central buffering function available
- Timing Coordination function provided by a station, generating a PSync at regular intervals (50-200 msec)
- The PSP mode is not supported
- All stations to be awake in a predefined window before a PSync frame is expected from the Timing Coordinator
- Stations will generate a short announcement frame (PTIM) to the destination in this Awake window
- Stations that received a PTIM will stay awake after the PSync until the actual Data frame arrives

WMAC Protocol Details

Slide 16

July 1993

Doc: IEEE 802.11-93/95

Ad-Hoc Power Management (cont'd)

- Short frames can be transmitted without a PTIM
- Stations switch to the TAM mode for performance
- If ad hoc net does not desire power management, system operates as usual under simple CSMA/CA

Frame Formats

- Two basic formats
- Allow variable Header capability by using Element structure, which allows future expansion of functionality

WMAC Protocol Details

Slide 18

July 1993

Doc: IEEE 802.11-93/95

Frame Header Format

- Power Management bits in every Frame
- Optional Elements in Header can contain TIM's
- Different Frame Types supported

WMAC Frame Type Definitions

Element Fields are expandable and upward compatible

WMAC Protocol Details

Slide 20

July 1993

Doc: IEEE 802.11-93/95

Conclusion

- BSS Synchronization method is proposed that can be used for multiple purposes:
 - Power Management
 - Frequency Hop synchronization
 - Time Bounded Services & others
- Flexible Power Management provisions are presented that are independent of the application
 - Multiple Power Save Modes are available
 - Allow flexible Speed/Power trade-offs
 - Support extreme low power devices
- Power Management provisions will be key for mobility