WMAC Protocol

93/96

Comparison against MAC Criteria

Doc: IEEE P802.11-93/96

By: Wim Diepstraten, NCR

September 1993

Doc: IEEE 802.11-93/96

Supported Services:

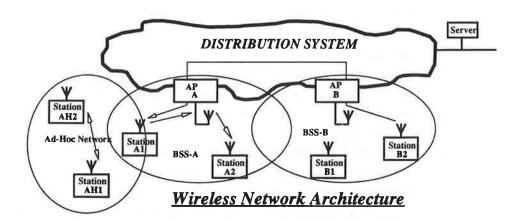
- * Asynchronous Service:
 - Full 802 LLC service with unicast/multicast capability.
 - Broadcast/Multicast reliability depend on medium load.
 - LLC-1 service only mode without Broadcast available for extreme low Power Devices.
- * Isochronous Service:
 - Available as an option, and can mix with Async only implementations.
 - Support mixed Voice/Data applications.
 - Higher speed or Video support depends on PHY speed.
 - BSS overlap dependent on PHY channel isolation.

Supported configurations:

- * Infrastructure based network (Async Service)
 - Default all traffic via AP but Direct Station-to-Station possible.
 - Single NID per ESA, and unique APID per BSA.
 - Multiple BSS's can overlap using same channel.
 - Can overlap with an Ad-Hoc Network on same channel.
 - Distribution system can be any 802 LAN, also 802.11.
- * Services provided by AP+Distribution System.
 - AP contains forward function to other BSS and or a wired Network. This is an expanded "Bridge" function.
 - (Re-)Association Service provided.
 - "Initial" and "Previous APID" parameters exchanged to support Re-Association across Routers.
 - Station to initiate Re-Association process based on "Link Quality".
 - Salemonization and Power Management provisions included in AP.

WMAC Protocol

Slide 2


Doc: IEEE 802.11-93/96

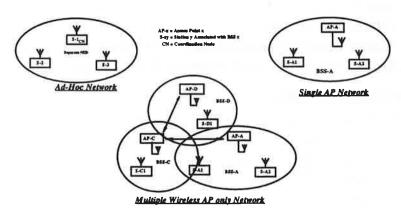
September 1993

Supported Configurations: (cont'd)

- * Wireless AP configuration possible.
 - Single AP without Distribution System connection to expand range.
 - Allows Wireless AP interconnections (Wireless DS).
- * Ad-Hoc Networks:
 - All traffic Direct Station-to-Station.
 - Assumption that all stations can see each other.
 - Use separate NID and fixed APID.
 - Can overlap with Infrastructure Network sharing the same channel.
 - A Station can be associated with Infrastructure and Ad-Hoc Network at the same time (on a non-Hopping PHY).
 - Synchronization and Power Management provisions included.
 - Stations "Listen for Timing Coordinator", and will assume this function when nothing is found.

Wireless Architecture:

- * Allows single and multiple channel overlapping BSA's.
- * Station can be part of Ad-Hoc and Infrastructure NW:


WMAC Protocol

Slide 4

September 1993

Doc: IEEE 802.11-93/96

Other Configurations:

* Multiple BSS Wireless only networks possible when using the same "Channel".

September 1993 Doc: IEEE 802.11-93/96

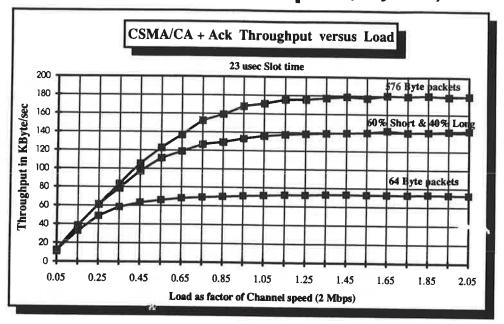
Supported Configurations: (cont'd)

- * Infrastructure Network (Isochronous Service)
 - Can operate with mixed Async/Isochronous devices.
 - Isochronous traffic in multiple overlapping BSA's require sufficient channel isolation (limited recovery possible).
 - Reserved but unused Isochronous Bandwidth is available for Asynchronous traffic without control overhead.
 - Need separate "Time Bounded" Distribution System to meet time constraints.
 - Support variable bitrate (Video, ATM backbone).
 - "Wireless segment" delay depending on PHY speed <=25 msec.
 - Random service sequence provision allows for time in Station to "Sean for a better AP" during each Frame interval, when "Link Quality" is deteriorating.
 - Same provision allows for Power Management.

WMAC Protocol

Slide 6

September 1993


Doc: IEEE 802.11-93/96

Performance Characteristics:

- * Basic CSMA/CA+Ack Access Protocol
 - Short access delay ideal for Bursty traffic.
 - Efficient stable throughput at High loads (Ref doc P802.11-92/51)
 - Shares medium automatically, without additional control overhead.
 - Ack allows MAC level recovery from lost packets.
- * Overlapping BSA's
 - Medium is shared when the same channel is used.
 - Sharing medium while multiple FH channels collide.
 - Tx-Power Control provision allows improved spectrum re-use.
 - Multiple BSA's can not overlap the same channel for Time Bounded Services.
- * Performance over Distribution System.
 - Depend on DS access delay, speed and number of segments.
 - Performance may depend on Power Save Mode used.

WMAC Protocol

Performance Example (Asynchr):

WMAC Protocol

Slide 8

September 1993

Doc: IEEE 802.11-93/96

Performance Example (Isochr):

* Assumption: 32Kbps ADPCM Voice

15 Byte MAC + Wavelan PHY Overhead

* Example: @ 2 Mbps Modem speed:

Voice only: 28 FDX (using talkspurt)
Voice/Data 576 Byte: 23 FDX (using talkspurt)

Voice/Data 576 Byte: 23 FDX (using talkspurt) Voice/Data 1500 Byte: 18 FDX (using talkspurt)

Voice/Data 1500 Byte: 9 FDX (100% load)

Async Data throughput: > 75 KByte/sec (assuming max Isoc load)

Async Data throughput: >130 KByte/sec (assuming 9 FDX Talkspurt channels)

Async Data throughput: >200 KByte/sec (no Isoc connection active)

Doc: IEEE 802.11-93/96

Power Management

- * Basic Provisions (Infrastructure):
 - Synchronization provisions within one BSS.
 - Power Management is application independent.
 - Stations can operate in different Power Save modes (PM mode indication in Frame Header, and maintained in the AP).
 - AP provides temporary buffering while Stations sleep.
 - AP frequently announces buffering status at predictable times.
 - Stations can dynamically switch PM modes to operate at desired Power/Throughput operating point.
- * Services provided:
 - Full LLC service with variable "Initial Response" delays depending on PM mode and parameterization.
 - LLC-1 service only for Extreme Low Power devices.
 - Very diverse applications can share the same infrastructure.

WMAC Protocol

Slide 10

Doc: IEEE 802.11-93/96

September 1993

Power Management (cont'd)

- * Ad-Hoc Network
 - All stations may choose to operate in Power Save mode.
 - One station to assume the "Timing Coordination" function using a tbd algorithm, to allow synchronization of the Network.
 - Transmitters send short traffic announcement frames in a time window where all stations are awake.
 - Stations receiving a traffic announcement stay awake to receive the data.
 - Stations can dynamically change PM mode to allow high speed data exchange.

Doc: IEEE 802.11-93/96

Power Management (cont'd)

* Performance:

- Very low Power operation possible during "Idle mode", which is the dominant factor for low power operation.
- Increased delay for the initial frame of a session.
- Dynamic PM mode switching allows high speed operation for subsequent frames.
- Another "Idle mode" Power consumption component that needs to be considered will depend on the re-association frequency and the power consumed during "Scan for a better AP" activity.
- A WMAC can be configured to operate at different Speed/Power trade-off points, by controlling the PM mode and timing parameters.
- * Re-Association speed / Power consumption.
 - Speed will depend on PHY type and "Scan for better AP" algorithm.
 - Stations can switch to PSP mode during scan to prevent frame loss.

WMAC Protocol

Slide 12

September 1993

Doc: IEEE 802.11-93/96

Idle Power Consumption example:

- * Assumptions: 600/150 mA Tx/Rx Power consumption
 - 20/100 msec TIM/DTIM interval
 - 50 ppm Xtal accuracy (The worst case is shown)
 - 2 Mbps channel (with 64/1088 Byte frame size 60/40% duty cycle)

Sleep interval

Avg. Power in mA	100 msec	1 sec	30 sec
CAM mode:	150	150	150
PSNP mode synchronized:	3		
PSNP mode (no synchr):	12		
PSP mode synchronized:	3	.3	.016
PSP mode (no synchr):	12	1.2	.041

Multiple PHY support:

- * WMAC can be configured for different speeds.
 - IFS and Backoff protocol parameters are PHY speed dependent (Symbol rate).
 - WMAC does support mixed bitrates (on same symbol rate).
- * WMAC can support ISM band PHY's.
 - Includes provisions for FHopper control.
 - Basic Synchronization for FHopper already present.
- * WMAC support for 1.9 GHz PCS band.
 - LBT and Backoff is very similar to Etiquette, and compliance is achieved by parameter set.

WMAC Protocol

Slide 14

September 1993

Doc: IEEE 802.11-93/96

Multiple PHY support (cont'd):

- * WMAC support for others (Wide-Band and IR).
 - IR:

No limitations known.

- ETSI 5.2 GHz:
- Is proposed as MAC candidate.
- * Basic PHY requirements to support WMAC.
 - Fast Carrier Detect function.
 - Fast Rx-Tx turnaround times improve efficiency.
- * MAC provisions to support multiple PHY's.
 - Synchronization provisions provides FH timing.
 - Conditional State Machines allow dedicated functions.
 - Parameters can be PHY dependent.
 - Intelligence is in the MAC.

Doc: IEEE 802.11-93/96

MAC Access Function:

- Same Distributed Access Coordination Function for Infrastructure and Ad-Hoc.
- No limit on number of stations.
- Access mechanism is fair, but close by stations have capture advantage during access collisions.
- Good High load stability (use exponential Backoff).
- Throughput efficiency similar to CSMA/CD, but depend on Rx-Tx turnaround times and CS delays.
- Ack provisions allow MAC level recovery from ISM and co-channel interference sources.
- Graceful medium sharing when Networks (and Hops) overlap.

WMAC Protocol

Slide 16

September 1993

Doc: IEEE 802.11-93/96

MAC Access Function:

- Async/Time Bounded mix by high priority level.
- Reserved but unused Isochronous bandwidth can be fully used by Asynchronous traffic.
- Only overhead for mixed operation is one extra slot access delay after a defer to allow Isochronous priority.
- Gradual Asynchronous throughput decrease when Time Bounded traffic is active.
- Isochronous robustness can be improved when needed by MAC level recovery.
- Asynchronous standard can be defined first without the need to fully specify the Time Bounded standard.

WMAC Protocol

Other MAC Features:

- Security on MSDU payload only.
- Encryption only on Wireless segment, so no existing network impact.
- Allows adoption of basic 802.10 SDE mechanisms.
- Element structure in Frame Format allows flexibility for future and proprietary extensions in a transparent way.
- Fragmentation provisions are being included.
- WMAC supports mixed bitrate, assuming bitrate detection function in the PHY. (allows migration).

WMAC Protocol

Slide 18