doc.: IEEE P802.11-93/192

DFWMAC

Distributed Foundation Wireless Access Protocol

Basic access method and Contention Free Service support.

for

IEEE 802.11

By:

Phil Belanger

Xircom

Greg Ennis

Symbol Technologies

Wim Diepstraten

NCR

November 1993

Doc: IEE P802.11-93/192

Wireless Network Architecture

- * Infrastructure mode can overlap with Ad-Hoc.
- * Support single and multi-channel PHY's.

November 1993 Doc: IEE P802.11-93/192

Supported Services:

- * Asynchronous Data Service:
 - Short response time with high instantaneous Throughput, suitable for Bursty traffic.
 - No BSS isolation required
- * Contention Free Service (Optional):
 - Time Bounded Service dimensioned for Voice.
 - . Connection oriented reserves bandwidth.
 - . Allows mixed Voice/Data.
 - . Allows variable bitrates (frame sizes)
 - Asynchronous Contention Free Service
 - . Supports the bursty nature.
 - Requires sufficient BSS isolation, (TDMA type access protocols have similar requirements).

DFWMAC Proposal

Slide 2

November 1993

Doc: IEE P802.11-93/192

Basic Access Protocol:

- * Use Distributed Access Protocol for efficient medium sharing.
- * Robust for interference.
 - CSMA/CA + Ack for unicast frames. With MAC level recovery
 - CSMA/CA for Broadcast frames.
- * Optional RTS / CTS to provide a "Virtual CS" function to protect against Hidden Nodes.
- * Supports Ad-Hoc operation seamlessly, so does not require any infrastructure.

CSMA/CA explained:

CSMA/CA Access Methodology with PCF priority

- * Reduce collision probability where mostly needed.
- * Efficient Backoff algorithm stable at high loads.
 - Exponential Backoff for retransmissions.
- * Implement different priority levels.

 (to allow immediate Ack and PCF coexistence)

DFWMAC Proposal

Slide 4

November 1993

Doc: IEE P802.11-93/192

Doc: IEE P802.11-93/192

CSMA/CA+Ack Access Protocol

RTS/CTS/DATA/Ack MPDU

- * With optional RTS / CTS provisions.
- * Defer on NAV and "Carrier Sense", also for the Contention Free service.
- * RTS / CTS use is controlled by a NoRTS parameter per station. Used for long inbound frames.

Contention Free Service Model:

MAC Service Model

- * Contention Free Service uses Point Coordination Function (PCF) on a DCF Foundation.
- * Async Data, Voice or mixed implementations possible.
- * Contention Free capability does not burden the Async service implementation.

DFWMAC Proposal

Slide 6

November 1993

Doc: IEE P802.11-93/192

Point Coordination Function:

PCF SuperFrame Composition

- * SuperFrame to allow mixed "Contention" and "Contention Free" operation.
- * "Contention Free" period under PCF control.
- * Both PCF and DCF Defer for each other causing SuperFrame Stretching.
- * Tx-Blackout to prevent DCF with PCF collision.

PCF Protocol:

PCF Protocol mechanism

- * CF-Burst by Polling bit in CF-Down frame.
- * Immediate response by Station on a Poll.
- * Stations to maintain NAV to protect Up-traffic.
- Variable length or no response possible.
- * Last frame from AP to reset the NAV in stations.
- * "Ack Previous Frame" bit in Header.

DFWMAC Proposal

Slide 8

November 1993

Doc: IEE P802.11-93/192

Station-to-Station PCF Protocol:

Station-to-Station PCF Protocol

- * Poll from AP can start a "Station-to-Station" transfer with individual Ack.
- * NAV update based on maximum frame duration.
- * Works with both Time Bounded and Async frames.

Contention Free Service Types:

PCF Contention Free Limits

- * Time Bounded Service
 - Highest priority based on reservation.
- * Async Contention Free Service
 - Dynamic Polling scheme to maintain Bursty characteristics.
- * Contention Free limit based on max. Async frame size.

DFWMAC Proposal

Slide 10

November 1993

Doc: IEE P802.11-93/192

Time Bounded Service:

TBFP / SFP Relation

- * Connection oriented repetitive traffic with low delay variance.
- * Reservation for "Time Bounded Frame Period" and maximum frame size per TBFP per connection.
- * Uses different Frame format based on "ConnID".
- * "Connection Setup" uses Async service.

November 1993 Doc: IEE P802.11-93/192

Time Bounded Characteristics:

- * Built on Asynchronous Access method (DCF).
- * Uses CSMA/CA + (Ack) with highest priority.
 - With limited recovery (QoS parameter)
- * Dimensioned to support mixed Voice/Data.
- * Video support possible at higher PHY rates.
- * Time Bounded Framing Period is PHY speed dependent, but also depend on max. Async frame size.

 SFP= 20-30 msec for 1-2 Mbps, 5-10 msec at 10 Mbps.
- * Unused reserved Time Bounded Bandwidth can be used for Asynchronous traffic.

DFWMAC Proposal

Slide 12

November 1993

Doc: IEE P802.11-93/192

Time Bounded Characteristics:

- * Can support different PHY speeds (1-20 Mbps). Which will allow different TBFP's.
- * Support variable frame size on a per SuperFrame basis, without control overhead.
 - Can take full advantage of "Talk Spurt" characteristics of Voice.
 - Allows flexible congestion control.
- * Support direct Station-to-Station.
- * Includes provisions for Power Consumption Management.
- * Includes basic re-association provisions.

Async Contention Free service:

- * Stations "Declare" ACF capability to the AP during setup.
- * AP maintains Dynamic Polling list for ACF-Burst
 - Request or traffic activity detection in Contention period can cause "Add to Poll-list"
 - n*SFP Inactivity can cause "Delete from Poll-list".
- * Limit on max number of Polls per SFP.

DFWMAC Proposal

Slide 14

November 1993

Doc: IEE P802.11-93/192

ACF Characteristics:

High Load Scenario

- * ACF can provide stable throughput during High Loads.
- * Is optimized for efficiency without reservation.
- * Can increase response times when Load is low.
- * Uses same Async frame format as in Contention Period.
- * Dynamic Polling algorithm can be AP proprietary.
- * Could also provide large population fixed polling service.

Doc: IEE P802.11-93/192

Scan and Power Management:

- * Time Synchronization assumed by regular Beacon or TimeStamp embedded in TBS Frame Header.
- * Random Polling Sequence allows equal average active time per station.
- * CF-Burst stations are awake from beginning of SuperFrame until they are serviced.

DFWMAC Proposal

Slide 16

November 1993

Doc: IEE P802.11-93/192

Frame Formats:

Async and Time Bounded Frame structure

DFWMAC Frames:

DFWMAC Proposal

Slide 18

November 1993

Doc: IEE P802.11-93/192

Performance Example (TBS):

Assumption:

32Kbps ADPCM Voice

12 Byte MAC + Wavelan PHY Overhead

* **Example:** @ SFP of:

20 msec

30 msec

Modem speed

@ 2 Mbps

@1 Mbps @2 Mbps @1 Mbps

Voice only:

16 FDX

10 FDX

20 FDX

11 FDX

Voice/Data 576 Byte:

14 FDX

7 FDX

18 FDX

9 FDX

Voice/Data 1500 Byte:

11 FDX

3 FDX

15 FDX

6 FDX

The following is an estimate of the maximum Async throughput @ 2Mbps

Async Data throughput:

> 75 KByte/sec (assuming max TBS load)

Async Data throughput:

>130 KByte/sec (assuming 11 FDX Talkspurt channels)

Async Data throughput:

>200 KByte/sec (no TBS connection active)

PCF limitations:

- * PCF's can not overlap on the same channel. (Same restrictions as in any TDMA system)
- * Application is therefore limited to:
 - Multi channel environment with sufficient BSS isolation.
 - In single BSS of single channel ESS.
- * Only supported in Infrastructure Networks.
- * Capability needed in both Station and AP.

Conclusion: Therefore the PCF should be an option.

DFWMAC Proposal

Slide 20

November 1993

Doc: IEE P802.11-93/192

Conclusion:

- * A PCF on a CSMA/CA + Ack based DCF is an efficient access method which maintains the good medium sharing characteristics.
 - Hidden node vulnerability decreased through NAV.
- * A very flexible Contention Free capability has been demonstrated, built on top of CSMA/CA.
 - Support both Time Bounded and Async services.
- * Advantage over TDMA:
 - Frame size flexibility allows variable bitrates.
 - Optimum capacity sharing between Asynchronous and Time Bounded services.
 - Dynamic allocation possible without reservation.
- * Like TDMA it only works when there is no overlap.