doc.: IEEE P802.11-93/192 # **DFWMAC** # Distributed Foundation Wireless Access Protocol Basic access method and Contention Free Service support. for ### **IEEE 802.11** By: **Phil Belanger** Xircom **Greg Ennis** **Symbol Technologies** Wim Diepstraten NCR November 1993 Doc: IEE P802.11-93/192 ### **Wireless Network Architecture** - * Infrastructure mode can overlap with Ad-Hoc. - * Support single and multi-channel PHY's. November 1993 Doc: IEE P802.11-93/192 ### **Supported Services:** - * Asynchronous Data Service: - Short response time with high instantaneous Throughput, suitable for Bursty traffic. - No BSS isolation required - * Contention Free Service (Optional): - Time Bounded Service dimensioned for Voice. - . Connection oriented reserves bandwidth. - . Allows mixed Voice/Data. - . Allows variable bitrates (frame sizes) - Asynchronous Contention Free Service - . Supports the bursty nature. - Requires sufficient BSS isolation, (TDMA type access protocols have similar requirements). **DFWMAC Proposal** Slide 2 November 1993 Doc: IEE P802.11-93/192 ### **Basic Access Protocol:** - * Use Distributed Access Protocol for efficient medium sharing. - * Robust for interference. - CSMA/CA + Ack for unicast frames. With MAC level recovery - CSMA/CA for Broadcast frames. - * Optional RTS / CTS to provide a "Virtual CS" function to protect against Hidden Nodes. - * Supports Ad-Hoc operation seamlessly, so does not require any infrastructure. ### CSMA/CA explained: CSMA/CA Access Methodology with PCF priority - * Reduce collision probability where mostly needed. - * Efficient Backoff algorithm stable at high loads. - Exponential Backoff for retransmissions. - * Implement different priority levels. (to allow immediate Ack and PCF coexistence) **DFWMAC Proposal** Slide 4 November 1993 Doc: IEE P802.11-93/192 Doc: IEE P802.11-93/192 ### CSMA/CA+Ack Access Protocol RTS/CTS/DATA/Ack MPDU - * With optional RTS / CTS provisions. - * Defer on NAV and "Carrier Sense", also for the Contention Free service. - * RTS / CTS use is controlled by a NoRTS parameter per station. Used for long inbound frames. ### **Contention Free Service Model:** MAC Service Model - * Contention Free Service uses Point Coordination Function (PCF) on a DCF Foundation. - * Async Data, Voice or mixed implementations possible. - * Contention Free capability does not burden the Async service implementation. **DFWMAC Proposal** Slide 6 November 1993 Doc: IEE P802.11-93/192 ### **Point Coordination Function:** PCF SuperFrame Composition - * SuperFrame to allow mixed "Contention" and "Contention Free" operation. - * "Contention Free" period under PCF control. - * Both PCF and DCF Defer for each other causing SuperFrame Stretching. - * Tx-Blackout to prevent DCF with PCF collision. ### **PCF Protocol:** #### PCF Protocol mechanism - * CF-Burst by Polling bit in CF-Down frame. - * Immediate response by Station on a Poll. - * Stations to maintain NAV to protect Up-traffic. - Variable length or no response possible. - * Last frame from AP to reset the NAV in stations. - * "Ack Previous Frame" bit in Header. #### **DFWMAC Proposal** Slide 8 November 1993 Doc: IEE P802.11-93/192 ### Station-to-Station PCF Protocol: #### Station-to-Station PCF Protocol - * Poll from AP can start a "Station-to-Station" transfer with individual Ack. - * NAV update based on maximum frame duration. - * Works with both Time Bounded and Async frames. # **Contention Free Service Types:** **PCF Contention Free Limits** - * Time Bounded Service - Highest priority based on reservation. - * Async Contention Free Service - Dynamic Polling scheme to maintain Bursty characteristics. - * Contention Free limit based on max. Async frame size. **DFWMAC Proposal** Slide 10 November 1993 Doc: IEE P802.11-93/192 ### **Time Bounded Service:** TBFP / SFP Relation - * Connection oriented repetitive traffic with low delay variance. - * Reservation for "Time Bounded Frame Period" and maximum frame size per TBFP per connection. - * Uses different Frame format based on "ConnID". - * "Connection Setup" uses Async service. November 1993 Doc: IEE P802.11-93/192 ### **Time Bounded Characteristics:** - * Built on Asynchronous Access method (DCF). - * Uses CSMA/CA + (Ack) with highest priority. - With limited recovery (QoS parameter) - * Dimensioned to support mixed Voice/Data. - * Video support possible at higher PHY rates. - * Time Bounded Framing Period is PHY speed dependent, but also depend on max. Async frame size. SFP= 20-30 msec for 1-2 Mbps, 5-10 msec at 10 Mbps. - * Unused reserved Time Bounded Bandwidth can be used for Asynchronous traffic. **DFWMAC Proposal** Slide 12 November 1993 Doc: IEE P802.11-93/192 ### **Time Bounded Characteristics:** - * Can support different PHY speeds (1-20 Mbps). Which will allow different TBFP's. - * Support variable frame size on a per SuperFrame basis, without control overhead. - Can take full advantage of "Talk Spurt" characteristics of Voice. - Allows flexible congestion control. - * Support direct Station-to-Station. - * Includes provisions for Power Consumption Management. - * Includes basic re-association provisions. ### **Async Contention Free service:** - * Stations "Declare" ACF capability to the AP during setup. - * AP maintains Dynamic Polling list for ACF-Burst - Request or traffic activity detection in Contention period can cause "Add to Poll-list" - n*SFP Inactivity can cause "Delete from Poll-list". - * Limit on max number of Polls per SFP. **DFWMAC Proposal** Slide 14 November 1993 Doc: IEE P802.11-93/192 ### **ACF Characteristics:** High Load Scenario - * ACF can provide stable throughput during High Loads. - * Is optimized for efficiency without reservation. - * Can increase response times when Load is low. - * Uses same Async frame format as in Contention Period. - * Dynamic Polling algorithm can be AP proprietary. - * Could also provide large population fixed polling service. #### Doc: IEE P802.11-93/192 ### **Scan and Power Management:** - * Time Synchronization assumed by regular Beacon or TimeStamp embedded in TBS Frame Header. - * Random Polling Sequence allows equal average active time per station. - * CF-Burst stations are awake from beginning of SuperFrame until they are serviced. **DFWMAC Proposal** Slide 16 November 1993 Doc: IEE P802.11-93/192 #### **Frame Formats:** Async and Time Bounded Frame structure ### **DFWMAC Frames:** **DFWMAC Proposal** Slide 18 November 1993 Doc: IEE P802.11-93/192 # Performance Example (TBS): **Assumption:** 32Kbps ADPCM Voice 12 Byte MAC + Wavelan PHY Overhead * **Example:** @ SFP of: 20 msec 30 msec **Modem speed** @ 2 Mbps @1 Mbps @2 Mbps @1 Mbps Voice only: **16 FDX** **10 FDX** 20 FDX **11 FDX** Voice/Data 576 Byte: **14 FDX** 7 FDX **18 FDX** 9 FDX Voice/Data 1500 Byte: 11 FDX 3 FDX 15 FDX 6 FDX The following is an estimate of the maximum Async throughput @ 2Mbps Async Data throughput: > 75 KByte/sec (assuming max TBS load) Async Data throughput: >130 KByte/sec (assuming 11 FDX Talkspurt channels) Async Data throughput: >200 KByte/sec (no TBS connection active) ### **PCF** limitations: - * PCF's can not overlap on the same channel. (Same restrictions as in any TDMA system) - * Application is therefore limited to: - Multi channel environment with sufficient BSS isolation. - In single BSS of single channel ESS. - * Only supported in Infrastructure Networks. - * Capability needed in both Station and AP. Conclusion: Therefore the PCF should be an option. **DFWMAC Proposal** Slide 20 November 1993 Doc: IEE P802.11-93/192 #### Conclusion: - * A PCF on a CSMA/CA + Ack based DCF is an efficient access method which maintains the good medium sharing characteristics. - Hidden node vulnerability decreased through NAV. - * A very flexible Contention Free capability has been demonstrated, built on top of CSMA/CA. - Support both Time Bounded and Async services. - * Advantage over TDMA: - Frame size flexibility allows variable bitrates. - Optimum capacity sharing between Asynchronous and Time Bounded services. - Dynamic allocation possible without reservation. - * Like TDMA it only works when there is no overlap.