Handouts for: "Synchronization and Scanning in DFWMAC"

IEEE P802.11-93/193 presented November 9, 1993

November 9, 1993

IEEE P802.11-93/193

Synchronization and Scanning in

DFWMAC

Greg Ennis Wim Diepstraten Phil Belanger

Symbol Technologies

NCR Xircom

November 9, 1993

IEEE P802.11-93/193

Basic Synchronization Approach

All stations maintain a local synchronization timer. Timing Synchronization Function

- keeps timers in synch
- · centralized in infrastructure networks
- · distributed function for ad hoc networks

Beacons provide timing reference for each BSS.

- · not required to hear every Beacon to stay in synch
- · Beacons used to calibrate clocks

Flexible Beacon Interval

BSS parameter

Compatible with CSMA.

DFWMAC Proposal

.

Ennis, Diepstraten, Belanger

Handouts for: "Synchronization and Scanning in DFWMAC"

IEEE P802.11-93/193 presented November 9, 1993

November 9, 1993

IEEE P802.11-93/193

Beacon Generation

Beacon transmission scheduled at Beacon Interval. Transmission may be delayed by CSMA deferral.

- subsequent transmissions at expected Beacon Interval
- · not relative to last Beacon transmission

Timestamp contains timer value at transmit time. AP sends Beacons in infrastructure networks.

DFWMAC Proposal

Ennis, Diepstraten, Belanger

November 9, 1993

IEEE P802.11-93/193

Ad Hoc Beaconing

Distributed Beaconing

- · any station in BSS may send a Beacon
- randomized Beacon generation

DFWMAC Proposal

Ennis, Diepstraten, Belanger

Handouts for: "Synchronization and Scanning in DFWMAC" IEEE P802.11-93/193 presented November 9, 1993

November 9, 1993

IEEE P802.11-93/193

More Ad Hoc Beaconing

Ad Hoc Beacon Sender's actions:

- · wake up before expected Beacon time
- · defer to current transmission if any
- · execute access backoff procedure
 - even when network was idle
 - randomizes send attempts
- · if heard another Beacon cancel Beacon transmission
 - else transmit Beacon

Beacon collisions are possible.

- · Beacons are multicasts, so no retransmission
- · other station likely to succeed after collision

Only SYNCed stations send Beacons.

DFWMAC Proposal

Ennis, Diepstraten, Belanger

Handouts for: "Synchronization and Scanning in DFWMAC"

IEEE P802.11-93/193 presented November 9, 1993

November 9, 1993

IEEE P802.11-93/193

Timer Accuracy

Timestamp included in every Beacon.

- · Sending station's TSF timer in microseconds
- 31 bit value and 1 bit SYNC flag

Beacon sender actions:

• Timestamp is sender's timer at SFD transmission time.

Beacon receiver actions:

- Save local TSF timer when Beacon SFD received.
- Validate received Beacon.
- If OK, compare saved timer with Beacon timestamp
- · Difference is amount to adjust local station timer
 - could adjust for propagation and transceiver delay

Precise synchronization is possible.

DFWMAC Proposal

Ennis, Diepstraten, Belanger

November 9, 1993

IEEE P802.11-93/193

Applications of TSF

Power Management

- · Beacons are sent at well known intervals
- · All station timers in BSS are synchronized
- · Beacons may contain TIM element
- Stations can wake up just before expected Beacon

Superframe Timing

- TSF Timer used to predict start of Contention Free burst
- · Beacon is not required in each superframe

Hop Timing for Frequency Hopping PHY

- · TSF Timer used to time Dwell Interval
- · stations' TSF Timers synchronized, so hop at same time
- Beacon is not required on each hop

DFWMAC Proposal

Ennis, Diepatraten, Belanger