Doc: IEEE P802.11-93/208a

November 1993

Doc: IEEE P802.11-93/208a

A Complete Description of Frame Prioritization in a CSMA/CA MAC Protocol

Rick White Motorola Wireless Data Group

Presentation

Slide 1

Rick White, Motorola

November 1993

Doc: IEEE P802.11-93/208a

CSMA/CA Protocol

- The basic channel access method is P-persistent CSMA with a MAC-level acknowledgment.
- The protocol requires devices to "listen before talk".
- If the channel is busy, the devices must wait until the channel becomes idle.
- The protocol also provides an additional feature which allows some devices priority to initiate the next transmission after the channel becomes idle.

Presentation

Slide 2

Doc: IEEE P802.11-93/208a

Determining the Channel State via Packet Detection

Presentation

Slide 3

Rick White, Motorola

November 1993

Doc: IEEE P802.11-93/208a

Channel Priority Mechanism Following a Transmission

Presentation

Slide 4

Doc: IEEE P802.11-93/208a

November 1993

Doc: IEEE P802.11-93/208a

Length of a Priority Time Slot

- The Priority Time Slot is made up of three components :
 - The amount of time required to make a decision to transmit when a clear channel is detected.
 - The amount of time it takes for the radio to change from receive to transmit.
 - The amount of time required for a device to determine that another device is transmitting

Presentation Slide 5 Rick White, Motorola

November 1993

Doc: IEEE P802.11-93/208a

Length of the Priority Time Slots: A Device Seizes the First Time Slot

Presentation Slide 6 Rick White, Motorola

Doc: IEEE P802.11-93/208a

Length of the Priority Time Slots: A Device Seizes the Second Time Slot

Presentation

Slide 7

Rick White, Motorola

November 1993

Doc: IEEE P802.11-93/208a

Transmitter Slot Usage

- A device will only use the Transmitter Slot if the following conditions are met:
 - Either the device has just finished transmitting a data fragment or the device has just received an acknowledgment of its own data fragment.
 - The device has previously transmitted at least one fragment of a data packet and more fragments of the same packet require transmission.
 - The number of consecutive T slots the device has grabbed (without waiting for an acknowledgment) has not exceeded the fragment_window_size.

Presentation Slide 8 Rick White, Motorola

Doc: IEEE P802.11-93/208a

Acknowledgment Slot Usage

- A device will only use the Acknowledgment Slot if the following conditions are met:
 - The device has just received a frame that requires acknowledging.
 - The T slot is detected idle.

Presentation Slide 9 Rick White, Motorola

November 1993

Doc: IEEE P802.11-93/208a

Transmitter, Acknowledgment, and Relay Slots

Presentation

Slide 10

Doc: IEEE P802.11-93/208a

The "Others" Slots

- The "Others" slots are used by all devices that do not have a higher priority.
- These slots are the contention portion of the protocol.
- There are multiple "Others" slots.
- A P-Persistent algorithm is used by the device to determine which "Others" slot will be used.

Presentation

Slide 11

Rick White, Motorola

November 1993

Doc: IEEE P802.11-93/208a

P-Persistence Algorithm

Presentation

Slide 12

Doc: IEEE P802.11-93/208a

The "Others" Slots and P-Persistence

Presentation

Slide 13

Rick White, Motorola

November 1993

Doc: IEEE P802.11-93/208a

Backoff

- There are two condition when the WMAC must refrain from transmitting
 - The device has a packet to transmit and the radio channel is sensed busy. This causes the MAC to use the Other Slot and P-Persistence.
 - The devices transmits a packet but fails to receive an acknowledgment. This causes the WMAC to execute the Backoff Algorithm.
 - » The data frame failed to reach its intended receiver.
 - » The acknowledgment frame was not received by the source device.
 - » A header CRC failure on a short fragment causes the receiving device to monitor the channel for max_payload. Meanwhile, another device hears an idle channel following the end of the frame and grabs an O slot before the receiving device can send its acknowledgment.

Presentation

Slide 14

Doc: IEEE P802.11-93/208a

Backoff Timer Calculation

- The binary exponential backoff time can be calculated in the following manner. Assume a configurable system parameter, mean_backoff_time, which is the mean backoff time for the first retry.
 - Generate a random variable uniformly distributed between 0 and 1 (U(0,1)).
 - Generate the backoff time for the ith retry with the following formula:

 $backoff = -mean_backoff_time*In(U(0,1))*2^{(i-1)}$

Presentation

Slide 15

Rick White, Motorola

November 1993

Doc: IEEE P802.11-93/208a

Backoff Algorithm

Presentation

Slide 16