Fragmentation / Reassembly at the MAC Layer

Presented by
Mark Demange
Motorola
Wireless Data Group

<table>
<thead>
<tr>
<th>Presentation</th>
<th>Slide 1</th>
<th>Mark Demange, Motorola</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Presentation</th>
<th>Slide 2</th>
<th>Mark Demange, Motorola</th>
</tr>
</thead>
</table>

Background

- Foundation MAC doesn't specify fragmentation capability
- Fragmentation enhances system performance
 - Improves performance in presence of microwave ovens
 - Improves performance with hidden stations within BSA
 - Allows optimal hopping FH PHYs
 - Reduces or Eliminates Variation in Start of Time Bounded Services Superframe
- Authors believe MAC without fragmentation is a broken MAC

<table>
<thead>
<tr>
<th>Presentation</th>
<th>Page 1</th>
<th>Mark Demange, Motorola</th>
</tr>
</thead>
</table>
Goals

- Include Fragmentation in MAC (issue 20.6)
- Adopt Proposal Given in doc: IEEE P802.11-94/37 as basis for inclusion in MAC

Outline Of Presentation

- Advantages of Fragmentation
- Cost of Fragmentation
- Fragmentation Proposal
- Conclusion
Advantages of Fragmentation -
Enhanced Performance in Presence of Microwave Oven Interference

- Characteristics Of Microwave Oven Interference
 - Pulse Amplitude Modulated Signal
 - 60 Hz Square Wave - 8.3 ms. ON, 8.3 ms. OFF
 - Typically Occupies 10 to 20 MHz of the band at any time
 - Rising and Falling Edges of Pulse “splatter” Across the Band
 - Center Frequency of Oven Drifts By Up to 10 MHz

- Impact of Oven Interference
 - Both DSS and FH Systems Effected
 - Systems Effected If Desired Signal Is Interfered
 - Signal Ratio Is Too Small
 - Any Frames Greater than 8.3 ms Guaranteed Not To Be Received Correctly (1100 Byte Ethernet Packet = 8.8 ms @ 1 Mbps)
Advantages of Fragmentation - Enhanced Performance in Presence of Microwave Oven Interference

<table>
<thead>
<tr>
<th>Frame per 1100 Byte Packet</th>
<th>% of packet received successfully during OFF time of oven</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - no fragmentation</td>
<td>0% - 100%</td>
</tr>
<tr>
<td>2</td>
<td>0% - 50%</td>
</tr>
<tr>
<td>3</td>
<td>50% - 80%</td>
</tr>
<tr>
<td>4</td>
<td>50% - 70%</td>
</tr>
</tbody>
</table>

Mark Demange, Motorola
Advantage of Fragmentation – Better Performance With Hidden & Sleeping Stations

• DS and FH Systems Vulnerable to Interference From Hidden Stations
• RTS/CTS Helps IF Stations Are Awake To Hear RTS/CTS Transmissions
• Consider System With No RTS/CTS:

![Diagram showing stations A and B]

Station A and B are hidden from each other.
Station B is sleeping.
Station A transmits RTS to Access Point
Access Point transmits CTS to station A
Station A starts to transmit data frame
Station B wakes up and senses channel as CLEAR

F16: Station B transmits to AP and complete AP reception of data frame from station A
Station A's transmission completes AP reception of data frame from station B
Both stations required to retransmit

F17: Station B transmits to AP and is not acknowledged by AP
Station B required to retransmit
Advantage of Fragmentation – Removes Constraints On Dwell/Superframe Times

- ‘MAC Should Maximize Use Of Bandwidth In Each Hop Interval’ – January 1993 PHY Committee (Passed)
- Three Options To Achieve Above Goal – more details in submission
 - Fix Dwell/Superframe – No Fragmentation
 - Requires Long Dwell To Compensate For
 Wasted Bandwidth – Long Dwell Undesirable
 For Effective FH
 - Stretched Dwell/Superframe
 - High Retransmission Rate Due To
 Un synchronized Hopping
 - Does not meet PHY Motion January 1993 “The
 hop rate shall be configurable in the MAC but
 fixed within a given BSA. It does not have to
 adapt.” PASS 20-1-1
 - Fix Dwell/Superframe – With Fragmentation
 - Allows Short Dwell Without Lost Bandwidth
 Penalty
 - Eliminates Un synchronized Hopping And Its
 Drawbacks
 - Eliminates Variation In Start Time Of Time
 Bounded Services Superframe

Advantage of Fragmentation – Removes Constraints On Dwell Times

- Fixed Dwell Duration with Fragmentation
 - Transmit Frames That Will Fit Within
 Current Dwell
 - Dynamically Adjust Frame Length To
 Fully Utilize End Of Dwell

<table>
<thead>
<tr>
<th>Frame size</th>
<th>Maximum wasted bandwidth in each hop interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20 ms. hop interval</td>
</tr>
<tr>
<td>1518 bytes - no fragmentation</td>
<td>80.7%</td>
</tr>
<tr>
<td>759 bytes</td>
<td>30.4%</td>
</tr>
<tr>
<td>506 bytes</td>
<td>20.2%</td>
</tr>
<tr>
<td>380 bytes</td>
<td>15.2%</td>
</tr>
<tr>
<td>Dynamic</td>
<td>approx. 0%</td>
</tr>
</tbody>
</table>
Cost Of Fragmentation

- Stations In Fringe Areas (No Interference or Hidden Stations)
 - 10% Of Stations In Outer 5% of Coverage Radius
 - Frame Error Rate (FER) approximated from BER (1 \times 10^{-5})
 - Expected Bytes Transmitted per 1100 Byte MSDU

<table>
<thead>
<tr>
<th>Cost Of Fragmentation</th>
<th>BLE per frame</th>
<th>Average Bytes TX per frame</th>
<th>Total Bytes TX per packet</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8%</td>
<td>1.37</td>
<td>607</td>
<td>1215</td>
</tr>
<tr>
<td>4.5%</td>
<td>4.07</td>
<td>409</td>
<td>1228</td>
</tr>
<tr>
<td>3.1%</td>
<td>3.13</td>
<td>513</td>
<td>1250</td>
</tr>
</tbody>
</table>

Cost Of Fragmentation

- Stations Not In Fringe Areas (No Interference or Hidden Stations)
 - BER of PHY Better Than 1 \times 10^{-5} Yields
 FER < 1%
 - Expected Throughput Typical Stations

<table>
<thead>
<tr>
<th>Cost Of Fragmentation</th>
<th>BLE per frame</th>
<th>Maximum Throughput at 1 Mbps</th>
<th>Maximum Throughput at 3 Mbps</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - no fragmentation</td>
<td>547 Kbps</td>
<td>900 Kbps</td>
<td>2700 Kbps</td>
</tr>
<tr>
<td>2 - (250 + 300) bytes</td>
<td>540 Kbps</td>
<td>786 Kbps</td>
<td>2358 Kbps</td>
</tr>
<tr>
<td>3 - (280 + 300) bytes</td>
<td>520 Kbps</td>
<td>776 Kbps</td>
<td>2328 Kbps</td>
</tr>
<tr>
<td>4 - (275 + 300) bytes</td>
<td>524 Kbps</td>
<td>772 Kbps</td>
<td>2324 Kbps</td>
</tr>
</tbody>
</table>

Fragmentation yields less than 5% degradation in performance.
Fragmentation yields less than 4% degradation in performance.
Fragmentation Proposal

- Control Of Channel
 - Fragmentation Protocol Must Ensure Control Of the Channel is Maintained
 - Current Foundation MAC Provides A Mechanism To Provide Channel Control
 - Channel Control With Windowing

Fragmentation Proposal

- Fragmentation Rules
 - Payload Of A Packet Shall Typically Be Some Fixed Number Of Bytes: (max_payload) (except when near the end of a dwell)
 - The Payload Of A Packet Shall Typically Be Greater Than Some Fixed Number Of Bytes: (min_payload) (except when fewer than min_payload bytes are remaining in the packet)
 - The Number Of Bytes In A Payload Can Be Reduced From max_payload To Allow More EfficientUsage Of The Time Near The End Of A Dwell.
 - When A Data Packet Needs To Be Transmitted, The Number Of Bytes In The Payload Of A New Fragment Is Determined By:
 - The Time Remaining In The Current Dwell.
 - The Number Of Bytes In The Packet That Have Not Yet Been Transmitted For The First Time.
Fragmentation Proposal

- Fragmentation Rules (continued)
 - Once the payload of a fragment has been established, that fragment will remain fixed until the fragment is successfully delivered to the immediate destination.
 - An access point relaying a packet will be allowed to re-fragment the packet.
 - Devices must transmit only if there is enough time remaining in the dwell to allow the transmission plus the acknowledgment if one is due.
 - If a fragment requires retransmission near the end of a dwell and there is not enough time left for the fragment plus the Ack, the device must defer until the next dwell.

Presentation Slide 17

Mark Demange, Motorola

Presentation Slide 18

Mark Demange, Motorola

Fragmentation Proposal

- Fragmentation Rules (continued)
 - Fragmentation near dwell boundary:

![Diagram]

Maximum frame size = 200 bytes, minimum frame size = 35 bytes
Fragmentation Proposal

- Fragmentation Rules (continued)
 - Fragmentation Near Dwell Boundary:
 (another example)

Maximum Frame Size = 200 Bytes, Minimum Frame Size = 25 Bytes, 1

- Retransmission of Window Due To Lost Acknowledgment

Not enough time in dwell to transmit Fragment 2. Order Fragment 2 until next dwell.
Fragmentation Proposal

• Packet Reassembly
 - Each Data Frame Requires Sufficient Information To Allow Reassembly At Receiving Station
 • Frame Type (data, acknowledgment, etc.)
 • Source Address
 • Destination Address
 • Packet Sequence Number
 • Fragment ID Number – fragments of MSDU sequentially numbered
 • End-Of-Packet Indicator – Indicates current fragment ID number corresponds to total frame in MSDU

• Frame Formats
 - Data Frame
 • 1 additional element required

<table>
<thead>
<tr>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame Type</td>
</tr>
<tr>
<td>Source Address</td>
</tr>
<tr>
<td>Destination Address</td>
</tr>
<tr>
<td>Packet Sequence</td>
</tr>
<tr>
<td>Fragment ID Number</td>
</tr>
<tr>
<td>End-Of-Packet</td>
</tr>
</tbody>
</table>

Fragment ID # is a binary field – not bit-mapped

• Acknowledgment Frame
 • Bitmap Field Of Fragments Received Is Required
Conclusion

- Fragmentation enhances system performance
 - Improves performance in presence of microwave ovens
 - Improves performance with hidden stations
 - Allows optimal hopping FH PHYs
 - Reduces or Eliminate Variation in Start of Time Bounded Services Superframe

- Benefits Of Fragmentation Offsets Minimal Overhead
 - 1 Element Per Frame of OH
 - Frame Windowing Minimizes Additional Acknowledgments

- Fragmentation Proposal Easily Integrated Into Foundation MAC
 - Mechanism To Control Channel Already Exists
 - Data Frames and Acknowledgment Frames Altered Slightly

Conclusion

- Goals:
 - Close issue 20.6 "Is there a need for fragmentation/reassembly at the MAC layer?" – YES
 - Motion: Use the proposal given in this submission as a basis for Implementation in the draft standard? – YES