IEEE P802.11-94/57

Wireless MAC

Foundation MAC Protocol

Tutorial presentation for the 802.11 PHY subgroup

By:

Greg Ennis Phil Belanger Wim Diepstraten

Foundation MAC Tutorial

Slide:1 of 54

March 1994

IEEE P802.11-94/57

Wim

Overview / Agenda:

- Overview / Basic Access mechanism
 - DCF access scheme.
 - Simulation results.
 - Functions required from the PHY.
 - PCF access scheme (optional).
- Power Management provisions
 - Functions required from the PHY.
- Roaming provisions
 - Scanning provisions
 - Functions required from the PHY.
- · Synchronization provisions
 - Synchronization timer
- Frame formats
- Quiz results
- **Foundation MAC Tutorial**

Greg

ai cg

Phil

Phil

- ----

Greg

Wim/John

Slide:2 of 54

Wireless Network Architecture

Foundation MAC Tutorial

Slide:3 of 54

Station B2

March 1994

IEEE P802.11-94/57

802.11 MAC Requirements:

- Single MAC to support multiple PHY's.
 - Support single and multi-channel PHY's.
- Also PHY's for future bands like:
 - 1.9 GHz PCS band (Voice and / or Data band).
 - Future 5.2 GHz.
 - Other ISM bands (915 MHz and 5.8 GHz)
- Support Infrastructure mode.
- Support Ad-Hoc mode.
- Support mobility.
 - "Roaming" provisions.
 - Power Conservation Management provisions.

Foundation MAC Tutorial

Slide:4 of 54

IEEE P802.11-94/57

Supported services:

- Asynchronous Data Service:
 - Short response time with high instantaneous throughput, suitable for Bursty traffic.
 - No BSS isolation required.
- Contention Free Service (optional):
 - Time Bounded service (can be dimensioned for Voice).
 - » Connection oriented (reserved bandwidth).
 - » Allows mixed Voice/Data operation.
 - » Allows variable bitrates (frame sizes).
 - Asynchronous Contention Free Service.
 - » Allows "centralised Control".
 - Requires sufficient BSS isolation.

Foundation MAC Tutorial

Slide:5 of 54

March 1994

IEEE P802.11-94/57

Basic Access Protocol:

- Use Distributed Access Protocol for efficient medium sharing without overlap restrictions.
- · Robust for interference.
 - CSMA/CA + Ack for unicast frames.
 With MAC level recovery
 - CSMA/CA for Broadcast frames.
- Parameterized use of RTS / CTS to provide a "Virtual CCA" funtion to protect against "Hidden Nodes".
- Support Ad-Hoc operation seamlessly, so does not require any infrastructure.
 - Ad-Hoc can overlap with Infrastructure.

Foundation MAC Tutorial

Slide:6 of 54

IEEE P802.11-94/57

CSMA/CA explained:

- Reduce collision probability where mostly needed.
- Efficient Backoff algorithm stable at high loads.
 - Exponential Backoff for retransmissions.
- Implement different fixed priority levels.
 - To allow immediate Ack and PCF coexistence.
- When no Ack received then retransmit frame after a random backoff (up to max. limit).

Foundation MAC Tutorial

Slide:7 of 54

March 1994

IEEE P802.11-94/57

CSMA/CA+Ack Protocol

- Defer access based on CCA and NAV state.
- Direct access when medium is sensed free longer then DIFS, otherwise defer and backoff.

Foundation MAC Tutorial

Slide:8 of 54

IEEE P802.11-94/57

Throughput efficiency:

· Efficient and stable throughput.

Foundation MAC Tutorial

Slide:9 of 54

March 1994

IEEE P802.11-94/57

RTS/CTS medium reservation:

- Net Allocation Vector (NAV) follows "Duration" info in RTS and CTS.
- Use of RTS / CTS is optional but <u>must</u> be implemented.
- Defer on NAV and "CCA", also for the Contention Free service.
- RTS / CTS use is controlled by a NoRTS parameter per station. Can be usefull for long inbound frames.

Foundation MAC Tutorial

Slide:10 of 54

IEEE P802.11-94/57

NoRTS parameter:

RTS/CTS is not benificial for short frames.

- The NoRTS parameter indicates per station that frames shorter then the parameter will be transmitted without RTS/CTS.
- · Allows optional use on long inbound frames.

Foundation MAC Tutorial

Slide:11 of 54

March 1994

IEEE P802.11-94/57

RTS/CTS Performance:

Good mixed use (long inbound frames) efficiency.

Foundation MAC Tutorial

Slide:12 of 54

IEEE P802.11-94/57

Backoff timer behaviour:

- · Backoff timer elapses only when medium is Free.
- So higher relative priority for stations that were already deffering.
- Exponential Contention window increase at every retransmission.

Foundation MAC Tutorial

Slide:13 of 54

March 1994

IEEE P802.11-94/57

Required PHY Functions:

- Continuous "Clear Channel Assessment" (CCA) signal indicating when medium is Free.
- PHY frequency channel selection under MAC control.

Foundation MAC Tutorial

Slide:14 of 54

IEEE P802.11-94/57

Important PHY parameters:

- The following parameters have effect on the throughput performance and access delay:
 - CCA response time.
 - Net Rx-Tx turnaround time.
 - Slot time=CCA response + Rx-Tx turnaround + medium delay (determines the collision window)
 - PHY preamble time.
 - Tx-Rx turnaround + medium delay determines SIFS.
 - CCA sensitivity level.
 - Channel switching delay.
- It is better to decrease the Rx-Tx turnaround time while increasing the PHY preamble length (this decreases the slot time).

Foundation MAC Tutorial

Slide:15 of 54

March 1994

IEEE P802.11-94/57

CCA sensitivity:

- CCA sensitivity determines "Hidden node" vulnerability.
- Interference area is much larger then coverage area.

Foundation MAC Tutorial

Slide:16 of 54

IEEE P802.11-94/57

Coordination Functions:

- Contention Free Service uses Point Coordination Function (PCF) on a DCF Foundation.
- Async Data, Voice or mixed implementations possible.
- Contention Free capability is a minimum burden for the Async service implementation.

Foundation MAC Tutorial

Slide: 19 of 54

March 1994

IEEE P802.11-94/57

Point Coordination Function

- SuperFrame to allow mixed "Contention" and "Contention Free" operation under PCF control.
- NAV prevents "Contention" traffic until reset by the last PCF transfer or other contention traffic.
- Both PCF and DCF Defer for each other causing SuperFrame Stretching.

Foundation MAC Tutorial

Slide:20 of 54

IEEE P802.11-94/57

PCF Burst operation

- CF-Burst by Polling bit in CF-Down frame.
- Immediate response by Station on a Poll.
- Stations to maintain NAV to protect Up-traffic.
- Variable length or no response possible.
- "Reset NAV" bit in last frame from AP.
- "Ack Previous Frame" bit in Header.

Foundation MAC Tutorial

Slide:21 of 54

March 1994

IEEE P802.11-94/57

Next:

Power Conservation Management

- Why is it important?
- Principle of operation.
- Infrastructure and Ad-Hoc operation.
- Dynamic behaviour.
- Functions required from the PHY.

Foundation MAC Tutorial

Slide:22 of 54

IEEE P802.11-94/57

Power Management:

- Power Conservation Management is very important to support mobility (battery life).
- Idle receive state is dominating power consumption.
- Current LAN's assume Rx is always ready to receive.
- Basic power conservation principles:
 - Turn transceiver off as much as possible.
 - Assure that traffic is temporarily buffered while stations are sleeping.
 - Solution should be application independent, and provide high throughput when needed.

Foundation MAC Tutorial

Slide:23 of 54

March 1994

IEEE P802.11-94/57

Power Management principle:

- Need application independent solution.
- MAC transmitter need to buffer packets until remote receiver is Awake.
- Transmitter announces for which station frames are buffered.
- Transmitter and receiver needs to be synchronized.
 - Transmitter needs to know when Rx is Awake.
 - Rx needs to be Awake when relevant data is expected.
 - Accurate synchronization needed to allow extreme low Power operation.

Foundation MAC Tutorial

Slide:24 of 54

IEEE P802.11-94/57

Basic operation:

- · Synchronize all stations.
 - AP In Infrastructure Networks.
 - Distributed among stations in Ad-Hoc networks.
- Stations can be in different PM-modes and can dynamically switch PM-modes.

- CAM:

Continuous active mode.

- TAM:

Temporary active mode.

- PSM:

Power Save Mode (two flavours).

- Transmitters know the PM-mode of the receivers.
 - Two bits in each frame header.
- Transmitters will send "Traffic Information Map" (TIM) at regular intervals indicating buffer status.

Foundation MAC Tutorial

Slide:25 of 54

March 1994

IEEE P802.11-94/57

Station Power Save states:

- Transmit State:
 - Transmitter is turned On.
- Awake State:
 - Receiver is fully powered and capable to receive.
- Doze State:
 - Transceiver Is not able to transmit or receive, and consumes very low power. TIM interval Timer and some other circuitry may still be active.
- Stations using Power Save mode will cycle from Doze to Awake, only when relevant traffic is expected, or just before a transmission starts.
 - Stations can maintain in an awake state until a no activity timer expires (no Tx or Rx to station activity) (TAM).
- · CAM stations will be continuous Awake.

Foundation MAC Tutorial

Slide:26 of 54

IEEE P802.11-94/57

Power Conservation modes:

- Two different Power Save Modes available:
- PSNP: Power Save Non-Polling.
 - Buffered traffic will immediately follow the DTIM.
 - Stations identified in the DTIM stay awake to accept traffic.
 - Stations need to listen to every (D)TIM (in Beacon).
 - Multicast traffic will follow every DTIM.
- PSP: Power Save Polling.
 - Stations do not have to listen to every TIM. This allows very long sleep times.
 - Stations identified in the TIM need to retrieve the buffered frames by a Poll cycle.
 - This allows very low power operation (months on battery)

Foundation MAC Tutorial

Slide:27 of 54

March 1994

IEEE P802.11-94/57

Dynamic behaviour support:

- Stations can dynamically switch to TAM mode.
- Return to PSM after "No-activity" time-out is signalled to remote through PM bits.

Foundation MAC Tutorial

Slide:28 of 54

Infrastructure mode:

Infrastructure Power Management Basic operation

 Synchronization allows station awakening just before a (D)TIM.

Foundation MAC Tutorial

Slide:29 of 54

March 1994

IEEE P802.11-94/57

Ad-Hoc Power Management

- Stations are synchronized using distributed Beacons.
- All stations have a common awake period.
- Stations that want to send will announce frames using a short ATIM frame in the common awake period.
 - Short frames will be send without a prior ATIM.
 - The PSP mode is not supported.
- Stations that do not receive an ATIM during the common awake will go to sleep again.
- Others will stay awake to accept the actual frame.

Foundation MAC Tutorial

Slide:30 of 54

IEEE P802.11-94/57

Required PHY functions:

For Power Management:

PHY Sleep/Awake under MAC control.

Fast wake-up time.

MAC need to know when PHY is stable (Tx and Rx)

CCA activation also in the middle of a frame (response time less critical).

Foundation MAC Tutorial

Slide:31 of 54

March 1994

IEEE P802.11-94/57

Support for Mobility

- · Stations may move from one BSS to another
- MAC must support fast BSS transitions
 - switch to a new AP when the current AP is unacceptable
 - find the "best AP" to associate
 - join the BSS of that AP
- Initial "association" support.
 - find the desired BSS
 - join the desired BSS

Foundation MAC Tutorial

Slide:32 of 54

IEEE P802.11-94/57

How to find other stations

- All networks send Beacons at known interval
- Stations use Scanning to find:
 - a specific BSS at initialization time
 - a better Access Point when "roaming"
 - » triggered by deteriorating signal quality or other events like "No Beacon" time out
- Scanning stations tune to channels other than the one used by their current BSS.
 - to see what else is out there
 - they are "off line" during scans
 - » can go into PSP mode to ensure frames are buffered
- The MAC determines which channel to use.

Foundation MAC Tutorial

Slide:33 of 54

March 1994

IEEE P802.11-94/57

Passive Scanning:

Find networks simply by listening.

Beacons are sent at a known rate.

Scanner listens to each channel.

· waits at least Beacon Interval on empty channels

Practical for PHYs with a few channels or with a short Beacon Interval.

When network found, save Network ID and Timestamp delta.

• only information required to "tune" to that network

Foundation MAC Tutorial

Slide:34 of 54

IEEE P802.11-94/57

Active Scanning:

Can be much faster than passive scanning.

On each channel, scanner sends a Probe.

- · Request message sent to broadcast address
- NetworkID specifies the network for which the scanner is looking.

Wait for a Probe Response.

- · wait for a bounded time T1
- · if detect energy, wait longer

Multiple Probe Responses are possible.

- · more than one AP on same channel
- · ad hoc network

Foundation MAC Tutorial

Slide:35 of 54

March 1994

IEEE P802.11-94/57

Scanning for APs:

More than one AP may be on the same channel.

- scanner wants to hear all Probe Responses.
- Probe responses should be randomized in time.
- Fast responses possible
 - when no activity on channel then Wait T1
 - when activity then Wait T2
 - when no response, then scan next channel.

Directed Probe Response.

- · invokes positive ACK protocol
- · automatic collision recovery

Foundation MAC Tutorial

Slide:36 of 54

IEEE P802.11-94/57

Scanning for Ad-Hoc Networks

Any station in the BSS may respond.

Access Backoff before Probe Response.

If collision then

- · sender does Backoff with larger Contention Window
- · other station may respond before retries...

Foundation MAC Tutorial

Slide:37 of 54

March 1994

IEEE P802.11-94/57

Initializing Ad-Hoc Networks:

- 1. Scan (BSSID = specific) for 5 seconds
- 2. If hear something then JoinNet.
- 3. else StartNet.
- 4. Stay active (don't go in power save mode) for T3 seconds.

JoinNet

adopt NetworkID and timing of that BSS.

StartNet

- SYNCed =1
- send Beacons to establish BSS timing

Foundation MAC Tutorial

Slide:38 of 54

IEEE P802.11-94/57

Scanning Conclusion:

Scanning required for many functions.

- · joining a network
- · initializing an ad hoc network
- · maintaining a single ad hoc network
- · finding a new AP for BSS transitions

Foundation MAC uses a common technique that supports all.

- · PHY independent
- single or multi channel
- · passive or active scanning

Foundation MAC Tutorial

Slide:39 of 54

March 1994

IEEE P802.11-94/57

Required PHY Functions:

To support Scanning:

MAC tells PHY "Go to channel x "

(Channel selection delay must be known)

PHY to provide a Signal Level/Quality indication to the MAC per frame.

Foundation MAC Tutorial

Slide:40 of 54

IEEE P802.11-94/57

Next:

- Timing Synchronization function (TSF).
 - What is it used for.
 - How is it done.
- Beacon to distribute Timing Synchronization.
- Use of TSF for Frequency Hopping PHY's.

Foundation MAC Tutorial

Slide:41 of 54

March 1994

IEEE P802.11-94/57

TSF applications:

Power Management

- · Beacons are sent at well known intervals
- · All station timers in BSS are synchronized
- Beacons may contain TIM element
- Stations can wake up just before expected Beacon

Superframe Timing

- TSF Timer used to predict start of Contention Free burst
- · Beacon is not required in each superframe

Hop Timing for Frequency Hopping PHY

- TSF Timer used to time Dwell Interval
- stations' TSF Timers synchronized, so hop at same time
- Beacon is not required on each hop

Foundation MAC Tutorial

Slide:42 of 54

IEEE P802.11-94/57

Synchronization Approach:

All stations maintain a local synchronization timer.
Timing Synchronization Function (TSF)

- · keeps timers in synch
- · centralized in infrastructure networks
- · distributed function for ad hoc networks

Beacons provide timing reference for each BSS.

- · not required to hear every Beacon to stay in synch
- · Beacons used to calibrate local clocks

Flexible Beacon Interval

· BSS parameter

Fully Compatible with CSMA (Beacons can defer).

Foundation MAC Tutorial

Slide:43 of 54

March 1994

IEEE P802.11-94/57

Beacon Generation

Beacon transmission scheduled at Beacon Interval.

Transmission may be delayed by CSMA deferral.

- · subsequent transmissions at expected Beacon Interval
- · not relative to last Beacon transmission

Timestamp contains timer value at transmit time.

AP sends Beacons in infrastructure networks.

Foundation MAC Tutorial

Slide:44 of 54

IEEE P802.11-94/57

Ad-Hoc Beaconing:

Distributed Beaconing

- any station in BSS may send a Beacon (distributed)
- · Beacon generation is randomized in time

Foundation MAC Tutorial

Slide:45 of 54

March 1994

IEEE P802.11-94/57

More Ad-Hoc Beaconing:

Ad Hoc Beacon Sender's actions:

- wake up before expected Beacon time
- · defer to current transmission if any
- · execute access backoff procedure
 - even when network was idle
 - randomizes send attempts
- if heard another Beacon cancel Beacon transmission
 - else transmit Beacon

Beacon collisions are possible.

- · Beacons are multicasts so no retransmission
- · other station likely to succeed after collision

Only SYNCed stations send Beacons.

Foundation MAC Tutorial

Slide:46 of 54

IEEE P802.11-94/57

Timer Accuracy:

Timestamp included in every Beacon.

- · Sending station's TSF timer in microseconds
- 31 bit value and 1 bit SYNC flag

Beacon sender actions:

• Timestamp is sender's timer at SFD transmission time.

Beacon receiver actions:

- Save local TSF timer when Beacon SFD received.
- · Validate received Beacon.
- · If OK, compare saved timer with Beacon timestamp
- · Difference is amount to adjust local station timer
 - could adjust for propagation and transceiver delay

Precise synchronization is possible.

Foundation MAC Tutorial

Slide:47 of 54

March 1994

IEEE P802.11-94/57

Frequency Hopping and TSF:

STAs use their TSF timer to maintain hop synch. Only PHY dependency is Max. TSF value.

- maximum TSF value is total time for hop sequence
 - MaxTSF = NumHops * Dwell_Interval
- TSF timer value describes progress in hopping sequence
 - which hop and how long in that hop

STAs independently time Dwell_Interval.

· each station knows when to hop (MAC)

Hop stretching could be possible. Hop timing fields not required in MAC header.

Dwell_Interval and Beacon_Interval independent.

Foundation MAC Tutorial

Slide:48 of 54

IEEE P802.11-94/57

Synchronization Conclusion:

Time synch. is required for many MAC functions.

- Proposed a general mechanism that can be used for:
 - Power Management
 - Superframe Timing in Contention Free Service
 - Hop synchronization in FHSS PHYs

Network events are timed by station TSF timers.

- · Not necessary to send frames to indicate network events
- Stations can maintain sync while sleeping or out of range

TSF is efficient.

- · periodic Beacon transmission calibrates timers
- time fields not required in all MAC frames

TSF is precise (microsecond accuracy is possible)

Foundation MAC Tutorial

Slide:49 of 54

March 1994

IEEE P802.11-94/57

Required PHY functions:

For synchronization support:

PHY frequency channel selection under MAC control (Go to channel x).

Fixed deterministic PHY delay (no variable buffering)

Foundation MAC Tutorial

Slide:50 of 54

IEEE P802.11-94/57

PHY Requirement summary:

- Continuous "Clear Channel Assessment" (CCA) signal indicating when medium is Free.
- PHY frequency channel selection under MAC control, "Go to channel x"
- PHY Sleep/Awake under MAC control.
- Fast wake-up time. MAC need to know when PHY is stable (Tx and Rx)
- CCA activation also in the middle of a frame (response time less critical).
- PHY to provide a Signal Level/Quality indication to the MAC per frame.
- Fixed deterministic PHY delay

Foundation MAC Tutorial

Slide:53 of 54

March 1994 IEEE P802.11-94/57 **Quiz results:** F 1: Nack 2: Α 3: D "free" appears twice 4: В harmless **DIFS<PIFS** 5: В all the buffered frames are sent immediately 6: A & B D 7: В false 8: 9: В false 10: D **Foundation MAC Tutorial** Slide:54 of 54