IEEE 802.11 Wireless Access Methods and Physical Layer Specifications

Title: Template Parameters of 4-ary PPM IR PHY

Author: Kwang-Cheng Chen, H.K. Lu, T.H. Tsaur

Department of Electrical Engineering

National Tsing Hua university Hsinchu, Taiwan 30043, R.O.C. TEL: +886 35 715131 ext. 4054

FAX: +886 35 715971

E-Mail: chenkc@ee.nthu.edu.tw

(as a representative of the National Standard Buerau, Ministry of Econimics, R.O.C.)

Abstract

This document summaries the parameters for 4-ary PPM to be possibly used in the IR PHY template.

Introduction

We believe that the choice of IR PHY should be based on technical merits, market concern, and integration with MAC. Consequently, 4-ary PPM is proposed as a candidate of IR PHY baseband modulation. This documentation is subject to further updation.

Summary of Parameters

Data Rate: 2M bps

Symbol Rate: 1M symbols per second (same as DS-PHY and FH-PHY)

Optical Power into Air: 16mW (average), 130mW (instaneous) Transmission Radiation Angle: not less than 1.9 (solid angle)

Pulse Shape: TBD

Transmission Bandwidth: 0-5M Hz (15-20dB down?)

BER (normal): less than 10⁻⁶ BER (minimal): less than 10⁻⁵

Distance (diffused): not less than 8-10 m Distance (direct path): not less than 20-30 m

FOV: TBD (larger than 3.14 solid angle)
Rx. Sensitivity: TBD (better than -30 dBm)

SYNC Pattern: TBD (0101 0101)

Preamble Length: TBD (no more than 4 bytes for synchronization overhead?)

MAC-PHY Interface: TBD

References:

[1] K.C. Chen, "Direct Detect Modulations of Indoor High Speed Diffused Infrared Transmission", submitted for publication.

[2] T.H. Tsaur, et al., "A Nonodirective Infrared Transceiver for Wireless Data Communications", IEEE Tr. on Consumer Electronics, Feb. 1994.