Preamble Modification for Improved Selection Diversity

R. Mahany
Norand Corporation

Assumptions

- Diversity is not a Requirement of Either PHY
 - Standard Should Enable, not Mandate Diversity
 - Manufacturers Free to Determine Whether their Customers will Pay for, Benefit from Diversity
 - Other Channel Optimization Alternatives Exist, and Should not be Precluded
 - Algorithms Should not be Specified by the Standard
- Anything That Can be Done at the Transmitter to Make the Receiver's Job Easier, Should be Done

May 1994
R. Mahany, Norand
Which Antenna?

Must Consider Noise Limited \([C/N]\), and Interference Limited \([C/I]\) Cases

Longer Observation Intervals on Each Antenna Provide the Opportunity to make a Better Decision

Best /Satisfactory Antenna

From 94/70, 93/37

Best Antenna, Worst Case Sampling

Satisfactory Antenna, Worst Case Sampling

May 1994

R. Mahany, Norand
Issues

- **Constraints**
 - Antenna Sampling and Start of Message are Asynchronous
 - Preamble Length and Content are Set
 - RX Setting Times Determined by Physical Constraints
 - Overall System Performance is Sensitive to PHY Overhead

- **Results**
 - Not Enough Time to Evaluate Signal During Preamble to Implement Best Antenna Approach Reliably in FH
 - DS Has Longer Preamble — Maybe OK, Maybe too Long?

Proposal: Give Receiver More Knowledge by Including Timestamp in Preamble

Current Preambles

- **Direct Sequence**
 - 11111111 .. 11111111 Unique Word
 - 128 symbols

- **Frequency Hopping**
 - 01010101 ... 10101 Unique Word
 - 80 symbols

Timestamp Concept

- **DS**
 - 0000 .. 11111111 Unique Word
 - Symbols 48,49

- **FH**
 - 1010 .. 10101 Unique Word
 - Symbols 32,33

May 1994

R. Mahany, Norand
Best or Satisfactory Algorithm

Scan for RSSI and Sync

Evaluate SNR

Not OK: No Timestamp

OK: Timestamp

Start of Frame

Compare Other Antenna

Select Best

Implementation Concept

IF Despreeder

SNR Clock Valid
SNR Valid
Clock Data
Timestamp Detect

From Demod/Slicer

Clock Recovery

SNR Clock Valid
SNR Valid
Clock Data
Timestamp Detect

May 1994
R. Mahany, Norand

May 1994
R. Mahany, Norand
Timing Simulation Results

With Discernible Signals at Both Antennas

Using 94/70 Timing Parameters

<table>
<thead>
<tr>
<th>Preamble A: Minimum SNR Interval</th>
<th>Preamble A: Average SNR Interval</th>
<th>Preamble B: Observation Interval</th>
<th>Best Antenna Branch Execution (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 μsec</td>
<td>26 μsec</td>
<td>20 μsec</td>
<td>72%</td>
</tr>
<tr>
<td>16 μsec</td>
<td>25 μsec</td>
<td>18 μsec</td>
<td>83%</td>
</tr>
<tr>
<td>16 μsec</td>
<td>24 μsec</td>
<td>16 μsec</td>
<td>94%</td>
</tr>
</tbody>
</table>

Assumed System Parameters

Antenna Switching Time: 8 μsec
Clock Detection Interval: 10 μsec

Summary and Comments

- Inclusion of Timestamp in Preamble
 - Provides Critical Timing Information to Diversity Selection Algorithm
 - Allows Best Antenna Algorithms using Long Observation Windows for Preamble Assessment
 - Does not Preclude use of Other Channel Compensation Techniques
 - Meets Unique Word Distance Requirement
 - Requires Tolerance of Change in Preamble Content in Receiver Synchronization and Preamble Detection Circuitry

May 1994
R. Mahany, Norand

Submission
Page 5
R. Mahany, Norand