doc.: IEEE P802.11-94/146a

Low Power, High Speed FQPSK Solution for Infrared and Other Wireless Systems

Chuck Brown Sr. Application Engineer

Intel Corporation (916) 356-3770

Presentation

Slide:1

C. Brown, Intel

July 1994

doc.: IEEE P802.11-94/146a

Agenda

- Assumption and Issues
- Review of FQPSK Carrier Modulated Design
- FPGA and Analog/RF ASIC Components
- Test Results
- Summary and Comments

Presentation

Slide:2

July 1994 doc.: IEEE P802.11-94/146a

Assumptions

Combined Baseband and Multichannel IR-PHY for EXIRLAN

4/16 Level PPM for Baseband Modulation and FQPSK for Carrier Modulation

Proposed Data Transfer Rate in the 1 Mb/s to 10 Mb/s range

Low Cost/High Power Infrared Transmit Diodes support DC to 30 MHz range

There is a need for low power, high performance solutions suitable for implementing EXIRLAN

Presentation

Slide:3

C. Brown, Intel

July 1994 doc.: IEEE P802.11-94/146a

Proposed Spectral Template

- 6 MHz baseband supports up to 1-Mb/s with 16-PPM
- Carrier band channels support 1- to 10-Mb/s (or higher) in a TBD bandwidth
- Constant envelope nonlinearly amplified IR system for power efficiency

Presentation

Slide:4

doc.: IEEE P802.11-94/146a

Issues

- Constraints
 - Battery operation
 - Limited spectral bandwidth
 - Physical size (hand held devices)
- Needs
 - Low power carrier modulated solutions
 - High performance designs to achieved desired data rates
 - Compact solution
 - Fast time-to-market at a reasonable cost

Recommendation: Combine today's field programmable gate arrary technology with low power Analog and RF ASICs

Presentation

Slide:5

C. Brown, Intel

July 1994

doc.: IEEE P802.11-94/146a

FQPSK Carrier Modulation

Presentation

Slide:6

FPGA Technology

Small PLCC packaging

- SRAM/EPROM architecture on 0.8 micron CHMOS process
- Low power typical uA standby with 1 mA/MHz active power
- Configurable Function Blocks (CFBs) configured as 24V10 logic or SRAM
- IEEE 1149.1 JTAG supports boundary scan testing and in-circuit reconfiguration and programming
- · Low cost path to mask programmed version

intel_®

Presentation

Slide:8

doc.: IEEE P802.11-94/146a

Low Power Analog ASIC Technology

- Qualcomm Baseband Analog and RF ASIC in 64 pin TQFP package
 Consumes 385 mW at 5V in full transmit and receive operation

Presentation

Slide:9

C. Brown, Intel

July 1994

doc.: IEEE P802.11-94/146a

Test Setup

- Tested FQPSK and other quadrature modulation techniques
- Tested 1 Mb/s and 4 Mb/s (device supports up to 16 Mb/s)
- Power consumption, tansmit and receive baseband, and power spectrum measurements taken

Presentation

Slide:10

doc.: IEEE P802.11-94/146a

Test Results

	Data	Master	Power Cor	Power Consumption	
11.0	Rate	Oscillator	Lot # V3471001	Lot # L4091644	
(1	Mb/s)	(MHz)	Nov. '93	Feb. '94	
sta	andby	0	35uW	145uW	
0.1		0.4	4.0mW	12.0mW	
0.2	25	1.0	9.0mW	17.5mW	
0.5	5	2.0	17.5mW	19.5mW	
1.0)	4.0	34.0mW	24.0mW	
2.0)	8.0	60.0mW	29.5mW	
4.0)	16.0	132mW	46mW	
5.0)	20.0	176mW	57mW	
10	.0	40.0	n/a	103mW	

(Vcc = 5.0V at room temperature, Measured lcc + lcco)

• February lots include new power screens in wafer test

Presentation

Slide:11

C. Brown, Intel

July 1994

doc.: IEEE P802.11-94/146a

Test Results

- 1 Mb/s Baseband Signal and Constellation Diagram
- No ISI nor jitter in baseband signal

Baseband

Constellation

Measured at input of quadrature modulator (unfiltered)

Presentation

Slide:12

doc.: IEEE P802.11-94/146a

Test Results

- 1 Mb/s FQPSK Out-of-Band Power Spectrum
- Carrier modulated at 10 MHz

(Fc = 10 MHz, Span=3 MHz, RBW=3KHz)

Presentation

Slide:13

C. Brown, Intel

July 1994

doc.: IEEE P802.11-94/146a

Summary and Comments

- FPGA technology provides a low-power, flexible means to implement first generation carrier modulated EXIRLAN systems
- 8 Bit quantization achieved nearly equal power spectrum and equal BER as 12 bit resolution
- The iFX740 based FQPSK baseband processor consumed less then 35 mW at 1 Mb/s and typical standby power less than 150 uW and is able to support data rates up to 16 Mb/s
- FQPSK carrier modulated transmission in a NLA channel provided IJF signaling and spectral compactness

Presentation

Silde:14